A platform for research: civil engineering, architecture and urbanism
Green Roof Design Techniques to Improve Water Use under Mediterranean Conditions
Green roof typology can vary depending on buildings structure, climate conditions, substrate, and plants used. In regions with hot and dry summers, such as the Mediterranean region, irrigation plays an essential role, as the highest temperatures occur during the driest period of the year. Irrigation might reduce the heat island effect and improve the cooling of buildings during this period, however, the added cost of maintenance operations and additional energy consumption could outrun the benefits provided by the project. Moreover, in situations where water is scarce or primarily channelled to other uses (e.g., domestic, agriculture or industry) during drought occurrence, it is advisable to implement green roof projects with the lowest use of water possible. The objective of the present work is to investigate solutions to optimize water use in green roofs under Mediterranean conditions, such as those of southern Europe. Two case studies are presented for Portugal, and potential techniques to reduce irrigation requirements in green roofs were tested. These addressed the use of native plant species, including the extreme type of a non-irrigated green roof (Biocrust roof) and techniques for plant installation. Plant drought tolerance was found to be an advantage in green roofs under these climatic conditions and, for the species studied, aesthetic value could be maintained when irrigation decreased.
Green Roof Design Techniques to Improve Water Use under Mediterranean Conditions
Green roof typology can vary depending on buildings structure, climate conditions, substrate, and plants used. In regions with hot and dry summers, such as the Mediterranean region, irrigation plays an essential role, as the highest temperatures occur during the driest period of the year. Irrigation might reduce the heat island effect and improve the cooling of buildings during this period, however, the added cost of maintenance operations and additional energy consumption could outrun the benefits provided by the project. Moreover, in situations where water is scarce or primarily channelled to other uses (e.g., domestic, agriculture or industry) during drought occurrence, it is advisable to implement green roof projects with the lowest use of water possible. The objective of the present work is to investigate solutions to optimize water use in green roofs under Mediterranean conditions, such as those of southern Europe. Two case studies are presented for Portugal, and potential techniques to reduce irrigation requirements in green roofs were tested. These addressed the use of native plant species, including the extreme type of a non-irrigated green roof (Biocrust roof) and techniques for plant installation. Plant drought tolerance was found to be an advantage in green roofs under these climatic conditions and, for the species studied, aesthetic value could be maintained when irrigation decreased.
Green Roof Design Techniques to Improve Water Use under Mediterranean Conditions
Teresa A. Paço (author) / Ricardo Cruz de Carvalho (author) / Pedro Arsénio (author) / Diana Martins (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Green roof energy and water related performance in the Mediterranean climate
Online Contents | 2010
|Green roof energy and water related performance in the Mediterranean climate
British Library Online Contents | 2010
|Green roof flood mitigation in the Mediterranean region
British Library Conference Proceedings | 2018
|British Library Conference Proceedings | 2010
|