A platform for research: civil engineering, architecture and urbanism
Performance Improvement of Thermoelectric Air Cooler System by Using Variable-Pulse Current for Building Applications
The thermoelectric air conditioning system (TE-AC) is a small, noiseless alternative to standard vapor compression refrigeration (VCR) systems. The cooling characteristics of a TE-AC system operating under two conditions, i.e., steady current and current pulses, are investigated in this study. This system consists of three thermoelectric modules, a heat sink, and an air circulation fan. The result shows that maximum temperature reduction in cooling side of TE-AC system was achieved at 6 A input current under steady state operation. The optimum performance of the TE-AC system under steady state operation depends upon the combined effect of the cooling load, Joule, Fourier, and Peltier heat. In TE-AC pulse operation, both current width and cooling load applied on the cold side of the thermoelectric module (TEMs) play an important role in achieving optimum cooling performance of the system. When normal input current operation (i.e., no current pulse) was compared to pulse-operated TE-AC system operation, it was found that pulse operation provides an additional average temperature reduction of 3–4 °C on the cold side of TEMs. Although on the hot side, it maintains a temperature in the range of 18 °C to 24 °C to reduce overshoot heat flux. The duration of operation is also important in determining pulse width and pulse amplitude. Minimum and overshoot peak temperature rises during each cycle for longer run operation. In the TE-AC system, the accumulated Joule heat during a current pulse frequently causes a temperature overshoot, which lasts much longer. As a result, the next current pulse was not released until the temperature of TE was restored to its initial value.
Performance Improvement of Thermoelectric Air Cooler System by Using Variable-Pulse Current for Building Applications
The thermoelectric air conditioning system (TE-AC) is a small, noiseless alternative to standard vapor compression refrigeration (VCR) systems. The cooling characteristics of a TE-AC system operating under two conditions, i.e., steady current and current pulses, are investigated in this study. This system consists of three thermoelectric modules, a heat sink, and an air circulation fan. The result shows that maximum temperature reduction in cooling side of TE-AC system was achieved at 6 A input current under steady state operation. The optimum performance of the TE-AC system under steady state operation depends upon the combined effect of the cooling load, Joule, Fourier, and Peltier heat. In TE-AC pulse operation, both current width and cooling load applied on the cold side of the thermoelectric module (TEMs) play an important role in achieving optimum cooling performance of the system. When normal input current operation (i.e., no current pulse) was compared to pulse-operated TE-AC system operation, it was found that pulse operation provides an additional average temperature reduction of 3–4 °C on the cold side of TEMs. Although on the hot side, it maintains a temperature in the range of 18 °C to 24 °C to reduce overshoot heat flux. The duration of operation is also important in determining pulse width and pulse amplitude. Minimum and overshoot peak temperature rises during each cycle for longer run operation. In the TE-AC system, the accumulated Joule heat during a current pulse frequently causes a temperature overshoot, which lasts much longer. As a result, the next current pulse was not released until the temperature of TE was restored to its initial value.
Performance Improvement of Thermoelectric Air Cooler System by Using Variable-Pulse Current for Building Applications
Kashif Irshad (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Performance Testing of a Thermoelectric Cooler for Medical Application
British Library Conference Proceedings | 2011
|Thermoelectric cooler based on bulk Peltier effect
British Library Online Contents | 2003
|FE Analysis of Thermoelectric Cooler Using Bi-Te-Sb Compound Alloy
British Library Online Contents | 2006
|Neuro-fuzzy inference system for control of a thermoelectric brain cooler
British Library Online Contents | 2008
|Energy consumption minimization in thermoelectric cooler with position control
British Library Online Contents | 2002
|