A platform for research: civil engineering, architecture and urbanism
Low Cost, Multi-Pollutant Sensing System Using Raspberry Pi for Indoor Air Quality Monitoring
Deteriorating levels of indoor air quality is a prominent environmental issue that results in long-lasting harmful effects on human health and wellbeing. A concurrent multi-parameter monitoring approach accounting for most crucial indoor pollutants is critical and essential. The challenges faced by existing conventional equipment in measuring multiple real-time pollutant concentrations include high cost, limited deployability, and detectability of only select pollutants. The aim of this paper is to present a comprehensive indoor air quality monitoring system using a low-cost Raspberry Pi-based air quality sensor module. The custom-built system measures 10 indoor environmental conditions including pollutants: temperature, relative humidity, Particulate Matter (PM)2.5, PM10, Nitrogen dioxide (NO2), Sulfur dioxide (SO2), Carbon monoxide (CO), Ozone (O3), Carbon dioxide (CO2), and Total Volatile Organic Compounds (TVOCs). A residential unit and an educational office building was selected and monitored over a span of seven days. The recorded mean PM2.5, and PM10 concentrations were significantly higher in the residential unit compared to the office building. The mean NO2, SO2, and TVOC concentrations were comparatively similar for both locations. Spearman rank-order analysis displayed a strong correlation between particulate matter and SO2 for both residential unit and the office building while the latter depicted strong temperature and humidity correlation with O3, SO2, PM2.5, and PM10 when compared to the former.
Low Cost, Multi-Pollutant Sensing System Using Raspberry Pi for Indoor Air Quality Monitoring
Deteriorating levels of indoor air quality is a prominent environmental issue that results in long-lasting harmful effects on human health and wellbeing. A concurrent multi-parameter monitoring approach accounting for most crucial indoor pollutants is critical and essential. The challenges faced by existing conventional equipment in measuring multiple real-time pollutant concentrations include high cost, limited deployability, and detectability of only select pollutants. The aim of this paper is to present a comprehensive indoor air quality monitoring system using a low-cost Raspberry Pi-based air quality sensor module. The custom-built system measures 10 indoor environmental conditions including pollutants: temperature, relative humidity, Particulate Matter (PM)2.5, PM10, Nitrogen dioxide (NO2), Sulfur dioxide (SO2), Carbon monoxide (CO), Ozone (O3), Carbon dioxide (CO2), and Total Volatile Organic Compounds (TVOCs). A residential unit and an educational office building was selected and monitored over a span of seven days. The recorded mean PM2.5, and PM10 concentrations were significantly higher in the residential unit compared to the office building. The mean NO2, SO2, and TVOC concentrations were comparatively similar for both locations. Spearman rank-order analysis displayed a strong correlation between particulate matter and SO2 for both residential unit and the office building while the latter depicted strong temperature and humidity correlation with O3, SO2, PM2.5, and PM10 when compared to the former.
Low Cost, Multi-Pollutant Sensing System Using Raspberry Pi for Indoor Air Quality Monitoring
He Zhang (author) / Ravi Srinivasan (author) / Vikram Ganesan (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Coefficient of Mean Deviation of Indoor Pollutant Concentration and Indoor Air Quality Evaluation
British Library Conference Proceedings | 2004
|British Library Online Contents | 2013
|Baseline indoor air quality pollutant characterization in five United States schools
British Library Conference Proceedings | 2000
|