A platform for research: civil engineering, architecture and urbanism
Multi-objective simultaneous optimal planning of electrical vehicle fast charging stations and DGs in distribution system
The large-scale construction of fast charging stations (FCSs) for electrical vehicles (EVs) is helpful in promoting the EV. It creates a significant challenge for the distribution system operator to determine the optimal planning, especially the siting and sizing of FCSs in the electrical distribution system. Inappropriate planning of fast EV charging stations (EVCSs) cause a negative impact on the distribution system. This paper presented a multi-objective optimization problem to obtain the simultaneous placement and sizing of FCSs and distributed generations (DGs) with the constraints such as the number of EVs in all zones and possible number of FCSs based on the road and electrical network in the proposed system. The problem is formulated as a mixed integer non-linear problem (MINLP) to optimize the loss of EV user, network power loss (NPL), FCS development cost and improve the voltage profile of the electrical distribution system. Non-dominated sorting genetic algorithm II (NSGA-II) is used for solving the MINLP. The performance of the proposed technique is evaluated by the 118-bus electrical distribution system.
Multi-objective simultaneous optimal planning of electrical vehicle fast charging stations and DGs in distribution system
The large-scale construction of fast charging stations (FCSs) for electrical vehicles (EVs) is helpful in promoting the EV. It creates a significant challenge for the distribution system operator to determine the optimal planning, especially the siting and sizing of FCSs in the electrical distribution system. Inappropriate planning of fast EV charging stations (EVCSs) cause a negative impact on the distribution system. This paper presented a multi-objective optimization problem to obtain the simultaneous placement and sizing of FCSs and distributed generations (DGs) with the constraints such as the number of EVs in all zones and possible number of FCSs based on the road and electrical network in the proposed system. The problem is formulated as a mixed integer non-linear problem (MINLP) to optimize the loss of EV user, network power loss (NPL), FCS development cost and improve the voltage profile of the electrical distribution system. Non-dominated sorting genetic algorithm II (NSGA-II) is used for solving the MINLP. The performance of the proposed technique is evaluated by the 118-bus electrical distribution system.
Multi-objective simultaneous optimal planning of electrical vehicle fast charging stations and DGs in distribution system
Gurappa Battapothula (author) / Chandrasekhar Yammani (author) / Sydulu Maheswarapu (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0