A platform for research: civil engineering, architecture and urbanism
Effect of Aeration Modes and COD/N Ratios on Organic Matter and Nitrogen Removal in Horizontal Subsurface Flow Constructed Wetland Mesocosms
A series of mesocosm-scale horizontal subsurface flow constructed wetlands (HSSF-CWs) were established. In Experiment 1, four artificial aeration (AA) modes, including pre-aeration at 24 h before the input of influent water (PA), aeration at 6 h (6AA) and 12 h (12AA) after the input of influent water and non-aeration (NA), were tested to obtain an optimal aeration mode for chemical oxygen demand (CODCr) and nitrogen removal. The results showed that aeration after the input of influent water could improve the removal efficiencies of CODCr and ammonia-nitrogen (NH4⁺-N), but lead to an accumulation of nitrate-nitrogen (NO3−-N). The above observation demonstrated that a single aeration cannot create an ideal alternation of aerobic and anaerobic conditions for simultaneous nitrification and denitrification. Therefore, HSSF-CWs with intermittent aeration (IA), after the input of influent water and NA were established to evaluate the combined effects of IA and influent COD/N ratios on pollutant removal in Experiment 2. The HSSF-CW with IA exhibited a better performance in CODCr and nitrogen removal compared to HSSF-CW with NA. The highest removal percentages of CODCr (90.1%), NH4+-N (99.8%) and total nitrogen (TN, 99.5%) were achieved at a COD/N ratio of 9.3 in HSSF-CW with IA.
Effect of Aeration Modes and COD/N Ratios on Organic Matter and Nitrogen Removal in Horizontal Subsurface Flow Constructed Wetland Mesocosms
A series of mesocosm-scale horizontal subsurface flow constructed wetlands (HSSF-CWs) were established. In Experiment 1, four artificial aeration (AA) modes, including pre-aeration at 24 h before the input of influent water (PA), aeration at 6 h (6AA) and 12 h (12AA) after the input of influent water and non-aeration (NA), were tested to obtain an optimal aeration mode for chemical oxygen demand (CODCr) and nitrogen removal. The results showed that aeration after the input of influent water could improve the removal efficiencies of CODCr and ammonia-nitrogen (NH4⁺-N), but lead to an accumulation of nitrate-nitrogen (NO3−-N). The above observation demonstrated that a single aeration cannot create an ideal alternation of aerobic and anaerobic conditions for simultaneous nitrification and denitrification. Therefore, HSSF-CWs with intermittent aeration (IA), after the input of influent water and NA were established to evaluate the combined effects of IA and influent COD/N ratios on pollutant removal in Experiment 2. The HSSF-CW with IA exhibited a better performance in CODCr and nitrogen removal compared to HSSF-CW with NA. The highest removal percentages of CODCr (90.1%), NH4+-N (99.8%) and total nitrogen (TN, 99.5%) were achieved at a COD/N ratio of 9.3 in HSSF-CW with IA.
Effect of Aeration Modes and COD/N Ratios on Organic Matter and Nitrogen Removal in Horizontal Subsurface Flow Constructed Wetland Mesocosms
Xin Chen (author) / Hui Zhu (author) / Yingying Xu (author) / Brian Shutes (author) / Baixing Yan (author) / Qingwei Zhou (author)
2018
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Performance of horizontal subsurface flow constructed wetland in the removal of tannins
British Library Online Contents | 2010
|Performance of horizontal subsurface flow constructed wetland in the removal of tannins
Online Contents | 2010
|