A platform for research: civil engineering, architecture and urbanism
Comparing the Financial and Environmental Impact of Battery Energy Storage Systems and Diesel Generators on Microgrids
This article presents a robust analysis based on the data obtained from a genuine microgrid in operation, simulated by utilizing a diesel generator (DG) in lieu of the Battery Energy Storage System (BESS) to meet the same load during periods of elevated energy costs. The study reveals that the BESS significantly outperforms the DG and the conventional electrical grid in various financial and environmental aspects. Environmentally, BESS accounts for zero CO2 emissions, compared to the 67.32 tons of CO2 emitted annually by the DG. Financially, the total cost of BESS over 20 years (USD 1,553,791.31) is lower than that of DG (USD 1,564,965.18) and the electrical grid (USD 2,726,181.09). Furthermore, BESS displays a lower Required Average Discharge Price—RADP (USD 0.38/kWh) and Required Average Price Spread—RAPS (USD 0.18/kWh) compared to DG (RADP: USD 0.39/kWh; RAPS: USD 0.22/kWh) and the electrical grid (RADP: USD 0.71/kWh; RAPS: USD 0.38/kWh). During periods of high-energy tariffs, BESS provides significant environmental benefits, but it also offers a more economically advantageous option to meet the load. It offers an energy-efficient and economically feasible solution for the operation of microgrids.
Comparing the Financial and Environmental Impact of Battery Energy Storage Systems and Diesel Generators on Microgrids
This article presents a robust analysis based on the data obtained from a genuine microgrid in operation, simulated by utilizing a diesel generator (DG) in lieu of the Battery Energy Storage System (BESS) to meet the same load during periods of elevated energy costs. The study reveals that the BESS significantly outperforms the DG and the conventional electrical grid in various financial and environmental aspects. Environmentally, BESS accounts for zero CO2 emissions, compared to the 67.32 tons of CO2 emitted annually by the DG. Financially, the total cost of BESS over 20 years (USD 1,553,791.31) is lower than that of DG (USD 1,564,965.18) and the electrical grid (USD 2,726,181.09). Furthermore, BESS displays a lower Required Average Discharge Price—RADP (USD 0.38/kWh) and Required Average Price Spread—RAPS (USD 0.18/kWh) compared to DG (RADP: USD 0.39/kWh; RAPS: USD 0.22/kWh) and the electrical grid (RADP: USD 0.71/kWh; RAPS: USD 0.38/kWh). During periods of high-energy tariffs, BESS provides significant environmental benefits, but it also offers a more economically advantageous option to meet the load. It offers an energy-efficient and economically feasible solution for the operation of microgrids.
Comparing the Financial and Environmental Impact of Battery Energy Storage Systems and Diesel Generators on Microgrids
Tatiane Costa (author) / Amanda C. M. Souza (author) / Andrea Vasconcelos (author) / Ana Clara Rode (author) / Roberto Dias Filho (author) / Manoel H. N. Marinho (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Optimal Planning of Remote Microgrids with Multi-Size Split-Diesel Generators
DOAJ | 2022
|Battery energy storage systems in microgrids: Modeling and design criteria
BASE | 2020
|Innovative usage of Battery Energy Storage Systems for grids, microgrids, and shipboard applications
BASE | 2021
|