A platform for research: civil engineering, architecture and urbanism
Facile Bioinspired Preparation of Fluorinase@Fluoridated Hydroxyapatite Nanoflowers for the Biosynthesis of 5′-Fluorodeoxy Adenosine
To develop an environmentally friendly biocatalyst for the efficient synthesis of organofluorine compounds, we prepared the enzyme@fluoridated hydroxyapatite nanoflowers (FHAp-NFs) using fluorinase expressed in Escherichia coli Rosetta (DE3) as the biomineralization framework. The obtained fluorinase@FHAp-NFs were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and FT-IR spectrum and used in the enzymatic synthesis of 5′-fluorodeoxy adenosin with S-adenosyl-L-methionine and fluoride as substrate. At an optimum pH of 7.5, fluorinase confined in the hybrid nanoflowers presents an approximately 2-fold higher synthetic activity than free fluorinase. Additionally, after heating at 30 °C for 8 h, the FHAp-NFs retained approximately 80.0% of the initial activity. However, free enzyme could remain only 48.2% of its initial activity. The results indicate that the fluoride and hybrid nanoflowers efficiently enhance the catalytic activity and thermal stability of fluorinase in the synthesis of 5′-fluorodeoxy adenosine, which gives a green method for producing the fluorinated organic compounds.
Facile Bioinspired Preparation of Fluorinase@Fluoridated Hydroxyapatite Nanoflowers for the Biosynthesis of 5′-Fluorodeoxy Adenosine
To develop an environmentally friendly biocatalyst for the efficient synthesis of organofluorine compounds, we prepared the enzyme@fluoridated hydroxyapatite nanoflowers (FHAp-NFs) using fluorinase expressed in Escherichia coli Rosetta (DE3) as the biomineralization framework. The obtained fluorinase@FHAp-NFs were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and FT-IR spectrum and used in the enzymatic synthesis of 5′-fluorodeoxy adenosin with S-adenosyl-L-methionine and fluoride as substrate. At an optimum pH of 7.5, fluorinase confined in the hybrid nanoflowers presents an approximately 2-fold higher synthetic activity than free fluorinase. Additionally, after heating at 30 °C for 8 h, the FHAp-NFs retained approximately 80.0% of the initial activity. However, free enzyme could remain only 48.2% of its initial activity. The results indicate that the fluoride and hybrid nanoflowers efficiently enhance the catalytic activity and thermal stability of fluorinase in the synthesis of 5′-fluorodeoxy adenosine, which gives a green method for producing the fluorinated organic compounds.
Facile Bioinspired Preparation of Fluorinase@Fluoridated Hydroxyapatite Nanoflowers for the Biosynthesis of 5′-Fluorodeoxy Adenosine
Ningning Li (author) / Bingjing Hu (author) / Anming Wang (author) / Huimin Li (author) / Youcheng Yin (author) / Tianyu Mao (author) / Tian Xie (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Trans Tech Publications | 2008
Sol-gel derived fluoridated hydroxyapatite films
British Library Online Contents | 2003
|Mechanochemical-hydrothermal synthesis and characterization of fluoridated hydroxyapatite
British Library Online Contents | 2005
|British Library Online Contents | 2007
|