A platform for research: civil engineering, architecture and urbanism
Abordagem data mining para a previsão da resistência à compressão uniaxial de misturas laboratoriais de solo-cimento
A previsão da resistência à compressão uniaxial (qu) de misturas solo-cimento é de elevada importância durante a fase de projeto. Para a sua quantificação são realizados ensaios laboratoriais, os quais consomem muito tempo e recursos. Neste artigo é apresentada uma nova abordagem para avaliação da qu ao longo do tempo tirando proveito das elevadas capacidades de aprendizagem das técnicas de Inteligência Artificial (IA). Três algoritmos de IA, nomeadamente as Redes Neuronais Artificiais (RNAs), as Máquinas de Vetores de Suporte (MVSs) e Regressões Múltiplas (RMs), foram treinados utilizando uma base de dados composta por 444 registos contemplando solos não coesivos, coesivos e orgânicos, assim como diferentes ligantes, condições de mistura e tempos de cura. Os resultados obtidos evidenciam um desempenho promissor na previsão da qu de misturas laboratoriais de solo-cimento, sendo o melhor desempenho conseguido através da média das previsões obtidas pelas MVSs e RNAs (RR2=0,95). Estes modelos reproduzem eficazmente os principais efeitos das variáveis de entrada, nomeadamente da razão água/cimento, teor em cimento, teor em matéria orgânica e tempo de cura, as quais são conhecidas como preponderantes no comportamento de misturas solo-cimento.
Abordagem data mining para a previsão da resistência à compressão uniaxial de misturas laboratoriais de solo-cimento
A previsão da resistência à compressão uniaxial (qu) de misturas solo-cimento é de elevada importância durante a fase de projeto. Para a sua quantificação são realizados ensaios laboratoriais, os quais consomem muito tempo e recursos. Neste artigo é apresentada uma nova abordagem para avaliação da qu ao longo do tempo tirando proveito das elevadas capacidades de aprendizagem das técnicas de Inteligência Artificial (IA). Três algoritmos de IA, nomeadamente as Redes Neuronais Artificiais (RNAs), as Máquinas de Vetores de Suporte (MVSs) e Regressões Múltiplas (RMs), foram treinados utilizando uma base de dados composta por 444 registos contemplando solos não coesivos, coesivos e orgânicos, assim como diferentes ligantes, condições de mistura e tempos de cura. Os resultados obtidos evidenciam um desempenho promissor na previsão da qu de misturas laboratoriais de solo-cimento, sendo o melhor desempenho conseguido através da média das previsões obtidas pelas MVSs e RNAs (RR2=0,95). Estes modelos reproduzem eficazmente os principais efeitos das variáveis de entrada, nomeadamente da razão água/cimento, teor em cimento, teor em matéria orgânica e tempo de cura, as quais são conhecidas como preponderantes no comportamento de misturas solo-cimento.
Abordagem data mining para a previsão da resistência à compressão uniaxial de misturas laboratoriais de solo-cimento
Joaquim Tinoco (author) / António S. Correia (author) / Paulo Venda Oliveira (author) / A. Gomes Correia (author) / Luís Lemos (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Variáveis-chave no controle da resistência mecânica de misturas solo-cimento
DOAJ | 2007
|Resistencia a Compressao de Prismas com Argamassas de Cimento:Cal:Areia e Cimento Saibro:Areia
British Library Conference Proceedings | 1994
|Melhoramento do desempenho de misturas de solo-cimento com recurso a activadores de baixo custo
DOAJ | 2010
|