A platform for research: civil engineering, architecture and urbanism
Klasifikasi Penyakit Pada Daun Cabai Menggunakan Arsitektur VGG16
Penyakit pada tanaman cabai dapat mengancam produktivitas dan kualitas hasil panen jika tidak terdeteksi dan diatasi secara tepat waktu. Untuk meningkatkan deteksi dini penyakit pada tanaman cabai, kami mengembangkan sistem klasifikasi menggunakan arsitektur VGG16, sebuah jaringan saraf konvolusional yang telah terbukti efektif dalam pengolahan gambar kompleks. Penelitian ini memanfaatkan dataset citra daun cabai yang terdiri dari beberapa kelas penyakit yang umum dijumpai, termasuk Healthy, Yellowish, whitefly, leafcurl dan leafspot. Citra-citra ini diolah dan dinormalisasi untuk pelatihan dan pengujian model. Arsitektur VGG16 digunakan sebagai model dasar, yang telah dipre-trained pada dataset ImageNet untuk meningkatkan kinerja klasifikasi. Proses pelatihan model dilakukan dengan memanfaatkan teknik transfer learning, di mana lapisan-lapisan akhir dari VGG16 disesuaikan dengan dataset penyakit daun cabai. Selama pengujian, sistem berhasil mengenali dan mengklasifikasikan penyakit pada daun cabai dengan tingkat akurasi yang tinggi. Hasil evaluasi menunjukkan bahwa arsitektur VGG16 mampu mengenali berbagai penyakit dengan akurasi rata-rata sebesar 0.9962%. sedangkan waktu komputasi yang dibutukan adalah 7 detik.
Klasifikasi Penyakit Pada Daun Cabai Menggunakan Arsitektur VGG16
Penyakit pada tanaman cabai dapat mengancam produktivitas dan kualitas hasil panen jika tidak terdeteksi dan diatasi secara tepat waktu. Untuk meningkatkan deteksi dini penyakit pada tanaman cabai, kami mengembangkan sistem klasifikasi menggunakan arsitektur VGG16, sebuah jaringan saraf konvolusional yang telah terbukti efektif dalam pengolahan gambar kompleks. Penelitian ini memanfaatkan dataset citra daun cabai yang terdiri dari beberapa kelas penyakit yang umum dijumpai, termasuk Healthy, Yellowish, whitefly, leafcurl dan leafspot. Citra-citra ini diolah dan dinormalisasi untuk pelatihan dan pengujian model. Arsitektur VGG16 digunakan sebagai model dasar, yang telah dipre-trained pada dataset ImageNet untuk meningkatkan kinerja klasifikasi. Proses pelatihan model dilakukan dengan memanfaatkan teknik transfer learning, di mana lapisan-lapisan akhir dari VGG16 disesuaikan dengan dataset penyakit daun cabai. Selama pengujian, sistem berhasil mengenali dan mengklasifikasikan penyakit pada daun cabai dengan tingkat akurasi yang tinggi. Hasil evaluasi menunjukkan bahwa arsitektur VGG16 mampu mengenali berbagai penyakit dengan akurasi rata-rata sebesar 0.9962%. sedangkan waktu komputasi yang dibutukan adalah 7 detik.
Klasifikasi Penyakit Pada Daun Cabai Menggunakan Arsitektur VGG16
Ahmad Sanusi Mashuri (author) / Andi Sunyoto (author) / Kusnawi Kusnawi (author)
2024
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Klasifikasi Jenis Penyakit Tanaman Cabai Menggunakan Arsitektur DenseNet201
DOAJ | 2024
|Analisis Kinerja ResNet-50 dalam Klasifikasi Penyakit pada Daun Kopi Robusta
DOAJ | 2022
|DOAJ | 2023
|Fourier Descriptor Pada Klasifikasi Daun Herbal Menggunakan Support Vector Machine Dan Naive Bayes
DOAJ | 2023
|