A platform for research: civil engineering, architecture and urbanism
Airport Landside Sustainable Capacity and Level of Service of Terminal Functional Subsystems
The airport terminal is a complex building composed of many functional subsystems dimensioned to host passenger traffic, considering an appropriate level of service (LoS). The most widely known method to assess the LoS and design the terminal areas is the Airport Development Reference Manual by the International Air Transport Association (IATA). Based on this, a calculation tool in Microsoft Excel® was implemented to assess the capacity and dimension of the facilities for each functional subsystem of the terminal. The tool, composed of nine correlated spreadsheets, is a useful model to design new structures, evaluate the LoS currently offered, plan interventions, and face the new rules of passenger distancing due to the COVID-19 emergency. An international airport terminal with 20 million/year including Schengen and extra-Schengen passengers was studied. The LoS of the terminal subsystems was assessed and the areas needed for each subsystem were calculated. In the analyzed case study, most subsystems (departure hall, check-in, boarding gates, baggage claim, and arrival halls) were over-designed, according to the definition of the IATA LoS. This means that available spaces for queues and holding are sufficiently large to easily face the new rules of social distancing for passengers due to the recent COVID-19 emergency.
Airport Landside Sustainable Capacity and Level of Service of Terminal Functional Subsystems
The airport terminal is a complex building composed of many functional subsystems dimensioned to host passenger traffic, considering an appropriate level of service (LoS). The most widely known method to assess the LoS and design the terminal areas is the Airport Development Reference Manual by the International Air Transport Association (IATA). Based on this, a calculation tool in Microsoft Excel® was implemented to assess the capacity and dimension of the facilities for each functional subsystem of the terminal. The tool, composed of nine correlated spreadsheets, is a useful model to design new structures, evaluate the LoS currently offered, plan interventions, and face the new rules of passenger distancing due to the COVID-19 emergency. An international airport terminal with 20 million/year including Schengen and extra-Schengen passengers was studied. The LoS of the terminal subsystems was assessed and the areas needed for each subsystem were calculated. In the analyzed case study, most subsystems (departure hall, check-in, boarding gates, baggage claim, and arrival halls) were over-designed, according to the definition of the IATA LoS. This means that available spaces for queues and holding are sufficiently large to easily face the new rules of social distancing for passengers due to the recent COVID-19 emergency.
Airport Landside Sustainable Capacity and Level of Service of Terminal Functional Subsystems
Paola Di Mascio (author) / Laura Moretti (author) / Massimiliano Piacitelli (author)
2020
Article (Journal)
Electronic Resource
Unknown
landside capacity , level of service (LoS) , functional subsystems requirements , facilities , typical peak hour passenger (TPHP) , COVID-19 emergency distancing rules , Environmental effects of industries and plants , TD194-195 , Renewable energy sources , TJ807-830 , Environmental sciences , GE1-350
Metadata by DOAJ is licensed under CC BY-SA 1.0
Airport Terminal and Landside Design and Operation 1990
NTIS | 1990
|Airport Landside Planning and Operations
NTIS | 1992
Greening the Airport Landside Area: Light Rail Rapid Transit Access System
Springer Verlag | 2011
|