A platform for research: civil engineering, architecture and urbanism
Hybrid Forecasting Model for Short-Term Electricity Market Prices with Renewable Integration
In recent years, there have been notable commitments and obligations by the electricity sector for more sustainable generation and delivery processes to reduce the environmental footprint. However, there is still a long way to go to achieve necessary sustainability goals while ensuring standards of robustness and the quality of power grids. One of the main challenges hindering this progress are uncertainties and stochasticity associated with the electricity sector and especially renewable generation. In this paradigm shift, forecasting tools are indispensable, and their utilization can significantly improve system operation and minimize costs associated with all related activities. Thus, forecasting tools have an essential key role in all decision-making stages. In this work, a hybrid probabilistic forecasting model (HPFM) was developed for short-term electricity market prices (EMP) combining wavelet transforms (WT), hybrid particle swarm optimization (DEEPSO), adaptive neuro-fuzzy inference system (ANFIS), and Monte Carlo simulation (MCS). The proposed hybrid probabilistic forecasting model (HPFM) was tested and validated with real data from the Spanish and Pennsylvania-New Jersey-Maryland (PJM) markets. The proposed model exhibited favorable results and performance in comparison with previously published work considering electricity market prices (EMP) data, which is notable.
Hybrid Forecasting Model for Short-Term Electricity Market Prices with Renewable Integration
In recent years, there have been notable commitments and obligations by the electricity sector for more sustainable generation and delivery processes to reduce the environmental footprint. However, there is still a long way to go to achieve necessary sustainability goals while ensuring standards of robustness and the quality of power grids. One of the main challenges hindering this progress are uncertainties and stochasticity associated with the electricity sector and especially renewable generation. In this paradigm shift, forecasting tools are indispensable, and their utilization can significantly improve system operation and minimize costs associated with all related activities. Thus, forecasting tools have an essential key role in all decision-making stages. In this work, a hybrid probabilistic forecasting model (HPFM) was developed for short-term electricity market prices (EMP) combining wavelet transforms (WT), hybrid particle swarm optimization (DEEPSO), adaptive neuro-fuzzy inference system (ANFIS), and Monte Carlo simulation (MCS). The proposed hybrid probabilistic forecasting model (HPFM) was tested and validated with real data from the Spanish and Pennsylvania-New Jersey-Maryland (PJM) markets. The proposed model exhibited favorable results and performance in comparison with previously published work considering electricity market prices (EMP) data, which is notable.
Hybrid Forecasting Model for Short-Term Electricity Market Prices with Renewable Integration
Gerardo J. Osório (author) / Mohamed Lotfi (author) / Miadreza Shafie-khah (author) / Vasco M. A. Campos (author) / João P. S. Catalão (author)
2018
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Short-term Electricity Load Forecasting of Buildings in Microgrids
Online Contents | 2015
|American Institute of Physics | 2019
|Optimizing Power Market Clearing with Segmented Electricity Prices: A Bilevel Model
DOAJ | 2023
|