A platform for research: civil engineering, architecture and urbanism
Changes in photovoltaic potential over China in a warmer future
Solar photovoltaic (PV) technology offers a promising path for addressing energy demand and mitigating climate change. However, climatic conditions relevant to the productivity of solar power may be changed in a warmer future. Here, we quantify the impact of climate change on PV potential over China based on high-resolution climate projections within the framework of the Coordinated Regional Climate Downscaling Experiment (CORDEX). Our results indicate that the annual mean PV power potential ( PV _POT ) over China would decrease by several percent relative to the reference period (1986–2005) under a warmer climate, with the most pronounced decrease over the Tibetan Plateau, which is currently the most solar-rich region in China. However, beyond changes in the mean climate state, we demonstrate a substantial increase in events of extreme low PV power outputs (i.e. those falling below the 10th percentile of the probability distribution of the daily PV _POT anomalies). For instance, the frequency of extreme low PV events is projected to reach nearly three times the reference period level over the Tibetan Plateau under the scenario of 3 °C global warming (similar to late-century warming projected based on current mitigation policies). Future changes in PV _POT are dominated by changes in surface solar irradiance, while the warming condition further exacerbates the decrease in PV _POT . Our results highlight that both the mean and extreme conditions of solar inputs should be considered simultaneously when assessing the impacts of climate change on PV power outputs.
Changes in photovoltaic potential over China in a warmer future
Solar photovoltaic (PV) technology offers a promising path for addressing energy demand and mitigating climate change. However, climatic conditions relevant to the productivity of solar power may be changed in a warmer future. Here, we quantify the impact of climate change on PV potential over China based on high-resolution climate projections within the framework of the Coordinated Regional Climate Downscaling Experiment (CORDEX). Our results indicate that the annual mean PV power potential ( PV _POT ) over China would decrease by several percent relative to the reference period (1986–2005) under a warmer climate, with the most pronounced decrease over the Tibetan Plateau, which is currently the most solar-rich region in China. However, beyond changes in the mean climate state, we demonstrate a substantial increase in events of extreme low PV power outputs (i.e. those falling below the 10th percentile of the probability distribution of the daily PV _POT anomalies). For instance, the frequency of extreme low PV events is projected to reach nearly three times the reference period level over the Tibetan Plateau under the scenario of 3 °C global warming (similar to late-century warming projected based on current mitigation policies). Future changes in PV _POT are dominated by changes in surface solar irradiance, while the warming condition further exacerbates the decrease in PV _POT . Our results highlight that both the mean and extreme conditions of solar inputs should be considered simultaneously when assessing the impacts of climate change on PV power outputs.
Changes in photovoltaic potential over China in a warmer future
Jintao Zhang (author) / Qinglong You (author) / Safi Ullah (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Projected changes in mild weather frequency over China under a warmer climate
DOAJ | 2022
|Changes in global heat waves and its socioeconomic exposure in a warmer future
DOAJ | 2022
|Changes in European wind energy generation potential within a 1.5 °C warmer world
DOAJ | 2018
|