A platform for research: civil engineering, architecture and urbanism
The outbreak of the COVID-19 has brought about huge economic loss and civil aviation industries all over the world have suffered severe damage. An effective method is urgently needed to accurately predict air-transport demand under the influences of such accidental factors. This paper proposes a novel predicting framework for the air-transport demand considering the uncertainties caused by accidental factors including regional wars, climatic anomalies, and virus outbreaks. By employing a seasonal autoregressive integrated moving average (sARIMA) model as the basic model, a particle filter (PF)-based sARIMA-pf model is proposed. The applicability of adapting the high-order sARIMA model as the state transition model in a PF framework is shown and proven to be effective. The proposed method has the advantage of coping with short-term prediction with known uncertainties. By conducting case studies on the prediction of air passenger traffic volume in China, the sARIMA-pf model showed better performance than the sARIMA model and improved the accuracy by 49.29% and 44.96% under the conventional and pandemic scenarios, respectively, when using the root mean square error (RMSE) as the indicator.
The outbreak of the COVID-19 has brought about huge economic loss and civil aviation industries all over the world have suffered severe damage. An effective method is urgently needed to accurately predict air-transport demand under the influences of such accidental factors. This paper proposes a novel predicting framework for the air-transport demand considering the uncertainties caused by accidental factors including regional wars, climatic anomalies, and virus outbreaks. By employing a seasonal autoregressive integrated moving average (sARIMA) model as the basic model, a particle filter (PF)-based sARIMA-pf model is proposed. The applicability of adapting the high-order sARIMA model as the state transition model in a PF framework is shown and proven to be effective. The proposed method has the advantage of coping with short-term prediction with known uncertainties. By conducting case studies on the prediction of air passenger traffic volume in China, the sARIMA-pf model showed better performance than the sARIMA model and improved the accuracy by 49.29% and 44.96% under the conventional and pandemic scenarios, respectively, when using the root mean square error (RMSE) as the indicator.
Predicting Model for Air Transport Demand under Uncertainties Based on Particle Filter
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Predicting air-transport demand
Online Contents | 1993
|Taylor & Francis Verlag | 2012
|British Library Online Contents | 2012
|