A platform for research: civil engineering, architecture and urbanism
Comparative Study between Urea and Biogas Digestate Application towards Enhancing Sustainable Fertilization Management in Olive (Olea europaea L., cv. ‘Koroneiki’) Plants
Organic fertilization is a promising strategy to decrease N mineralization rates and high N losses via leaching and denitrification, thus synchronizing N application with N uptake for crops. A 230-day experiment with olive plants was realized under greenhouse conditions to compare urea and biogas digestate (BD) application on the growth, nutrient uptake, and physiological performance of Olea europaea L. plants. The following treatments were applied: (i) UREA, (ii) UREA + DCD (nitrification inhibitor), (iii) BD, (iv) BD + DCD, (v) acidified BD, (vi) acidified BD + DCD, (vii) CONTROL (typical native Marl soil type, without fertilizer application). Under BD application, significantly higher levels of organic matter, Olsen P, and exchangeable K compared to UREA were found. Significantly lower main shoot length and total plant biomass were recorded in the CONTROL soil compared to BD. Foliar N was lower in the ACID.BD and ACID.BD + DCD treatments, while leaf P was lower in UREA. The highest PSII activity was recorded in UREA + DCD, while the highest photosynthetic rate and intercellular CO2 concentration were determined in UREA. It is expected that these data will constitute a first comparative approach between urea and BD application in olive plants, which should be carefully considered, towards boosting sustainable fertilization in the frame of circular economy strategy.
Comparative Study between Urea and Biogas Digestate Application towards Enhancing Sustainable Fertilization Management in Olive (Olea europaea L., cv. ‘Koroneiki’) Plants
Organic fertilization is a promising strategy to decrease N mineralization rates and high N losses via leaching and denitrification, thus synchronizing N application with N uptake for crops. A 230-day experiment with olive plants was realized under greenhouse conditions to compare urea and biogas digestate (BD) application on the growth, nutrient uptake, and physiological performance of Olea europaea L. plants. The following treatments were applied: (i) UREA, (ii) UREA + DCD (nitrification inhibitor), (iii) BD, (iv) BD + DCD, (v) acidified BD, (vi) acidified BD + DCD, (vii) CONTROL (typical native Marl soil type, without fertilizer application). Under BD application, significantly higher levels of organic matter, Olsen P, and exchangeable K compared to UREA were found. Significantly lower main shoot length and total plant biomass were recorded in the CONTROL soil compared to BD. Foliar N was lower in the ACID.BD and ACID.BD + DCD treatments, while leaf P was lower in UREA. The highest PSII activity was recorded in UREA + DCD, while the highest photosynthetic rate and intercellular CO2 concentration were determined in UREA. It is expected that these data will constitute a first comparative approach between urea and BD application in olive plants, which should be carefully considered, towards boosting sustainable fertilization in the frame of circular economy strategy.
Comparative Study between Urea and Biogas Digestate Application towards Enhancing Sustainable Fertilization Management in Olive (Olea europaea L., cv. ‘Koroneiki’) Plants
Theocharis Chatzistathis (author) / Vasileios A. Tzanakakis (author) / Athanasios Papaioannou (author) / Anastasia Giannakoula (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2023
|British Library Online Contents | 2013