A platform for research: civil engineering, architecture and urbanism
Granular Temperature and Segregation in Dense Sheared Particulate Mixtures
In gravity-driven flows of different-sized (same density) particles, it is well known that larger particles tend to segregate upward (toward the free surface), and the smaller particles downward in the direction of gravity. Alternatively, when the particles are of the same size but different density, lighter particles tend to segregate upward and heavier particles, downward. When particles differ in both size and density, true of most mixtures of interest in industry and nature, the details are complicated and no rule based on gravity alone has captured the segregation behaviours. Gradients of granular temperature and kinetic stress (i.e., energy and stress associated with velocity fluctuations) offer alternative segregation driving forces, but have, until recently, been discounted as these dynamics are relatively small in dense flows. Recently, gradients in kinetic stress have been shown to play a significant role in segregating densely sheared particle mixtures, even where the kinetic stress is a relatively small percentage of the total stress. We review recent modelling advances accounting for this effect and validation in computational experiments. We show how this framework may be useful in capturing the complicated segregation phenomenology that emerges for dense sheared flows of particles different in both size and density.
Granular Temperature and Segregation in Dense Sheared Particulate Mixtures
In gravity-driven flows of different-sized (same density) particles, it is well known that larger particles tend to segregate upward (toward the free surface), and the smaller particles downward in the direction of gravity. Alternatively, when the particles are of the same size but different density, lighter particles tend to segregate upward and heavier particles, downward. When particles differ in both size and density, true of most mixtures of interest in industry and nature, the details are complicated and no rule based on gravity alone has captured the segregation behaviours. Gradients of granular temperature and kinetic stress (i.e., energy and stress associated with velocity fluctuations) offer alternative segregation driving forces, but have, until recently, been discounted as these dynamics are relatively small in dense flows. Recently, gradients in kinetic stress have been shown to play a significant role in segregating densely sheared particle mixtures, even where the kinetic stress is a relatively small percentage of the total stress. We review recent modelling advances accounting for this effect and validation in computational experiments. We show how this framework may be useful in capturing the complicated segregation phenomenology that emerges for dense sheared flows of particles different in both size and density.
Granular Temperature and Segregation in Dense Sheared Particulate Mixtures
Kimberly M. Hill (author) / Yi Fan (author)
2016
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Force fluctuations in sheared granular disks
Springer Verlag | 2013
|Density-driven sinking dynamics of a granular ring in sheared granular flows
British Library Online Contents | 2017
|Density-driven sinking dynamics of a granular ring in sheared granular flows
British Library Online Contents | 2017
|