A platform for research: civil engineering, architecture and urbanism
A Combined Probabilistic Approach for Natural Hazards Assessment of Soil-Sewer Pipes (S-SP) Systems
The structural failure prediction of underground sewer pipes systems seems very complicated due to the natural hazards of soils in which these elements are buried. The apparition of first cracks and notches in sewer pipes parts is governed by the interaction model of soil-sewer pipes system (S-SP)parameters mainly, the constitutive material laws of soil and sewer pipe materials. The detection of critical sections where the structural damages are highly probable is the focus point of this present study. Based on probabilistic analysis of stochastic modelling results (Monte Carlo Method) of random soil properties, the mechanical behaviour of a part of sewer pipe is analysed in terms of settlements and flexural stress distribution fluctuations. A parametric study is performed to quantify the effect of correlation length (Lc) and soils types on the structural reliability of underground sewer pipes. This current structural analysis offers to engineers and researchers a useful numerical tool in order to allow them the well understanding of the structural behaviour of buried sewer pipes by considering the spatial variability of soil geo-mechanical characteristics which reflects the soil natural process of formation, its aggregation and heterogeneity. The obtained numerical results show that the probabilistic analysis of the spatial variability of soil properties into structure numerical modelling of sewer pipes presents an accurate approach for the prediction of structural responses of waste water transportation infrastructures particularly, if the sewer pipe lengths are relatively significant and buried into several classes of soils along sewer pipe networks.
A Combined Probabilistic Approach for Natural Hazards Assessment of Soil-Sewer Pipes (S-SP) Systems
The structural failure prediction of underground sewer pipes systems seems very complicated due to the natural hazards of soils in which these elements are buried. The apparition of first cracks and notches in sewer pipes parts is governed by the interaction model of soil-sewer pipes system (S-SP)parameters mainly, the constitutive material laws of soil and sewer pipe materials. The detection of critical sections where the structural damages are highly probable is the focus point of this present study. Based on probabilistic analysis of stochastic modelling results (Monte Carlo Method) of random soil properties, the mechanical behaviour of a part of sewer pipe is analysed in terms of settlements and flexural stress distribution fluctuations. A parametric study is performed to quantify the effect of correlation length (Lc) and soils types on the structural reliability of underground sewer pipes. This current structural analysis offers to engineers and researchers a useful numerical tool in order to allow them the well understanding of the structural behaviour of buried sewer pipes by considering the spatial variability of soil geo-mechanical characteristics which reflects the soil natural process of formation, its aggregation and heterogeneity. The obtained numerical results show that the probabilistic analysis of the spatial variability of soil properties into structure numerical modelling of sewer pipes presents an accurate approach for the prediction of structural responses of waste water transportation infrastructures particularly, if the sewer pipe lengths are relatively significant and buried into several classes of soils along sewer pipe networks.
A Combined Probabilistic Approach for Natural Hazards Assessment of Soil-Sewer Pipes (S-SP) Systems
KaziTani Nabil (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Defect-Level Condition Assessment of Sewer Pipes
ASCE | 2025
|British Library Online Contents | 2005
Engineering Index Backfile | 1894
|Engineering Index Backfile | 1952
British Library Online Contents | 2009