A platform for research: civil engineering, architecture and urbanism
Zwitterion-Modified Ultrafiltration Membranes for Permian Basin Produced Water Pretreatment
Unconventional oil and gas extraction generates large quantities of produced water (PW). Due to strict environmental regulations, it is important to recover and reuse PW. In this study, commercial polyethersulfone (PES) ultrafiltration (UF) membranes were surface-modified with zwitterionic polymer 3-(3,4-Dihydroxyphenyl)-l-alanine (l-DOPA) solution to alleviate membrane fouling during the ultrafiltration of shale oil PW of the Permian Basin. UF membranes were coated in l-DOPA solution by using a dip coating technique. Membrane characterization tests confirmed successful l-DOPA coating on UF membranes. While performing the experiments, permeate flux behaviors of the uncoated and coated membranes and antifouling resistance of the zwitterionic coating were evaluated. Among the coated UF membranes with varying coating times from one day to three days, the three-day coated UF membrane showed a good flux performance and the highest fouling resistance. The flux reduced by 38.4% for the uncoated membrane, while the reduction was 16% for the three-day coated membrane after the 5 h ultrafiltration of PW. Both improvements of the flux performance and recovery ratio are attributed to a negatively-charged surface developed on the membranes after the zwitterionic coating. The UF pretreatment also improved the flux behavior of the later forward osmosis (FO) process for PW treatment.
Zwitterion-Modified Ultrafiltration Membranes for Permian Basin Produced Water Pretreatment
Unconventional oil and gas extraction generates large quantities of produced water (PW). Due to strict environmental regulations, it is important to recover and reuse PW. In this study, commercial polyethersulfone (PES) ultrafiltration (UF) membranes were surface-modified with zwitterionic polymer 3-(3,4-Dihydroxyphenyl)-l-alanine (l-DOPA) solution to alleviate membrane fouling during the ultrafiltration of shale oil PW of the Permian Basin. UF membranes were coated in l-DOPA solution by using a dip coating technique. Membrane characterization tests confirmed successful l-DOPA coating on UF membranes. While performing the experiments, permeate flux behaviors of the uncoated and coated membranes and antifouling resistance of the zwitterionic coating were evaluated. Among the coated UF membranes with varying coating times from one day to three days, the three-day coated UF membrane showed a good flux performance and the highest fouling resistance. The flux reduced by 38.4% for the uncoated membrane, while the reduction was 16% for the three-day coated membrane after the 5 h ultrafiltration of PW. Both improvements of the flux performance and recovery ratio are attributed to a negatively-charged surface developed on the membranes after the zwitterionic coating. The UF pretreatment also improved the flux behavior of the later forward osmosis (FO) process for PW treatment.
Zwitterion-Modified Ultrafiltration Membranes for Permian Basin Produced Water Pretreatment
Mirjalal Babayev (author) / Hongbo Du (author) / Venkata S. V. Botlaguduru (author) / Raghava R. Kommalapati (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Online Contents | 2016
|Oil-water emulsion separation on surface-modified capillary ultrafiltration membranes
DOAJ | 2024
|