A platform for research: civil engineering, architecture and urbanism
The Nature and Size Fractions of Particulate Matter Deposited on Leaves of Four Tree Species in Beijing, China
Particulate matter (PM) in different size fractions (PM0.1–2.5, PM2.5–10 and PM>10) accumulation on four tree species (Populus tomentosa, Platanus acerifolia, Fraxinus chinensis, and Ginkgo biloba) at two sites with different pollution levels was examined in Beijing, China. Among the tested tree species, P. acerifolia was the most efficient species in capturing PM, followed by F. chinensis, G. biloba, and P. tomentosa. The heavily polluted site had higher PM accumulation on foliage and a higher percentage of PM0.1–2.5 and PM2.5–10. Encapsulation of PM within cuticles was observed on leaves of F. chinensis and G. biloba, which was further dominated by PM2.5. Leaf surface structure explains the considerable differences in PM accumulation among tree species. The amounts of accumulated PM (PM0.1–2.5, PM2.5–10, and PM>10) increased with the increase of stomatal aperture, stomatal width, leaf length, leaf width, and stomatal density, but decreases with contact angle. Considering PM accumulation ability, leaf area index, and tolerance to pollutants in urban areas, we suggest P. acerifolia should be used more frequently in urban areas, especially in “hotspots” in city centers (e.g., roads/streets with heavy traffic loads). However, G. biloba and P. tomentosa should be installed in less polluted areas.
The Nature and Size Fractions of Particulate Matter Deposited on Leaves of Four Tree Species in Beijing, China
Particulate matter (PM) in different size fractions (PM0.1–2.5, PM2.5–10 and PM>10) accumulation on four tree species (Populus tomentosa, Platanus acerifolia, Fraxinus chinensis, and Ginkgo biloba) at two sites with different pollution levels was examined in Beijing, China. Among the tested tree species, P. acerifolia was the most efficient species in capturing PM, followed by F. chinensis, G. biloba, and P. tomentosa. The heavily polluted site had higher PM accumulation on foliage and a higher percentage of PM0.1–2.5 and PM2.5–10. Encapsulation of PM within cuticles was observed on leaves of F. chinensis and G. biloba, which was further dominated by PM2.5. Leaf surface structure explains the considerable differences in PM accumulation among tree species. The amounts of accumulated PM (PM0.1–2.5, PM2.5–10, and PM>10) increased with the increase of stomatal aperture, stomatal width, leaf length, leaf width, and stomatal density, but decreases with contact angle. Considering PM accumulation ability, leaf area index, and tolerance to pollutants in urban areas, we suggest P. acerifolia should be used more frequently in urban areas, especially in “hotspots” in city centers (e.g., roads/streets with heavy traffic loads). However, G. biloba and P. tomentosa should be installed in less polluted areas.
The Nature and Size Fractions of Particulate Matter Deposited on Leaves of Four Tree Species in Beijing, China
Huixia Wang (author) / Yan Xing (author) / Jia Yang (author) / Binze Xie (author) / Hui Shi (author) / Yanhui Wang (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Daily variations of size-segregated ambient particulate matter in Beijing
Online Contents | 2015
|Modeling Regional/Urban Ozone and Particulate Matter in Beijing, China
Taylor & Francis Verlag | 2009
|