A platform for research: civil engineering, architecture and urbanism
Comparison of machine learning methods for ground settlement prediction with different tunneling datasets
This study integrates different machine learning (ML) methods and 5-fold cross-validation (CV) method to estimate the ground maximal surface settlement (MSS) induced by tunneling. We further investigate the applicability of artificial intelligent (AI) based prediction through a comparative study of two tunnelling datasets with different sizes and features. Four different ML approaches, including support vector machine (SVM), random forest (RF), back-propagation neural network (BPNN), and deep neural network (DNN), are utilized. Two techniques, i.e. particle swarm optimization (PSO) and grid search (GS) methods, are adopted for hyperparameter optimization. To assess the reliability and efficiency of the predictions, three performance evaluation indicators, including the mean absolute error (MAE), root mean square error (RMSE), and Pearson correlation coefficient (R), are calculated. Our results indicate that proposed models can accurately and efficiently predict the settlement, while the RF model outperforms the other three methods on both datasets. The difference in model performance on two datasets (Datasets A and B) reveals the importance of data quality and quantity. Sensitivity analysis indicates that Dataset A is more significantly affected by geological conditions, while geometric characteristics play a more dominant role on Dataset B.
Comparison of machine learning methods for ground settlement prediction with different tunneling datasets
This study integrates different machine learning (ML) methods and 5-fold cross-validation (CV) method to estimate the ground maximal surface settlement (MSS) induced by tunneling. We further investigate the applicability of artificial intelligent (AI) based prediction through a comparative study of two tunnelling datasets with different sizes and features. Four different ML approaches, including support vector machine (SVM), random forest (RF), back-propagation neural network (BPNN), and deep neural network (DNN), are utilized. Two techniques, i.e. particle swarm optimization (PSO) and grid search (GS) methods, are adopted for hyperparameter optimization. To assess the reliability and efficiency of the predictions, three performance evaluation indicators, including the mean absolute error (MAE), root mean square error (RMSE), and Pearson correlation coefficient (R), are calculated. Our results indicate that proposed models can accurately and efficiently predict the settlement, while the RF model outperforms the other three methods on both datasets. The difference in model performance on two datasets (Datasets A and B) reveals the importance of data quality and quantity. Sensitivity analysis indicates that Dataset A is more significantly affected by geological conditions, while geometric characteristics play a more dominant role on Dataset B.
Comparison of machine learning methods for ground settlement prediction with different tunneling datasets
Libin Tang (author) / SeonHong Na (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Prediction of shield tunneling-induced ground settlement using machine learning techniques
Springer Verlag | 2019
|Prediction of shield tunneling-induced ground settlement using machine learning techniques
Springer Verlag | 2019
|Surface settlement prediction for EPB shield tunneling in sandy ground
Online Contents | 2017
|Prediction of settlement trough induced by tunneling in cohesive ground
Online Contents | 2012
|