A platform for research: civil engineering, architecture and urbanism
An Improved Scheduling Approach for Minimizing Total Energy Consumption and Makespan in a Flexible Job Shop Environment
Nowadays, manufacturing industry is under increasing pressure to save energy and reduce emissions, and thereby enhancing the energy efficiency of the machining system (MS) through operational methods on the system-level has attracted more attention. Energy-efficient scheduling (ES) has proved to be a typical measure suitable for all shop types, and an energy-efficient mechanism that a machine can be switched off and back on if it waits for a new job for a relatively long period is another proven effective energy-saving measure. Furthermore, their combination has been fully investigated in a single machine, flow shop and job shop, and the improvement in energy efficiency is significant compared with only applying ES for MS. However, whether such two energy-saving measures can be integrated in a flexible job shop environment is a gap in the existing study. To address this, a scheduling method applying an energy-efficient mechanism is proposed for a flexible job shop environment and the corresponding mathematical model, namely the energy-efficient flexible job shop scheduling (EFJSS) model, considering total production energy consumption (EC) and makespan is formulated. Besides, transportation as well as its impact on EC is taken into account in this model for practical application. Furthermore, a solution approach based on the non-dominated sorting genetic algorithm-II (NSGA-II) is adopted, which can avoid the interference of subjective factors and help select a suitable machine for each operation and undertake rational operation sequencing simultaneously. Moreover, experimental results confirm the validity of the improved energy-efficient scheduling approach in a flexible job shop environment and the effectiveness of the solution.
An Improved Scheduling Approach for Minimizing Total Energy Consumption and Makespan in a Flexible Job Shop Environment
Nowadays, manufacturing industry is under increasing pressure to save energy and reduce emissions, and thereby enhancing the energy efficiency of the machining system (MS) through operational methods on the system-level has attracted more attention. Energy-efficient scheduling (ES) has proved to be a typical measure suitable for all shop types, and an energy-efficient mechanism that a machine can be switched off and back on if it waits for a new job for a relatively long period is another proven effective energy-saving measure. Furthermore, their combination has been fully investigated in a single machine, flow shop and job shop, and the improvement in energy efficiency is significant compared with only applying ES for MS. However, whether such two energy-saving measures can be integrated in a flexible job shop environment is a gap in the existing study. To address this, a scheduling method applying an energy-efficient mechanism is proposed for a flexible job shop environment and the corresponding mathematical model, namely the energy-efficient flexible job shop scheduling (EFJSS) model, considering total production energy consumption (EC) and makespan is formulated. Besides, transportation as well as its impact on EC is taken into account in this model for practical application. Furthermore, a solution approach based on the non-dominated sorting genetic algorithm-II (NSGA-II) is adopted, which can avoid the interference of subjective factors and help select a suitable machine for each operation and undertake rational operation sequencing simultaneously. Moreover, experimental results confirm the validity of the improved energy-efficient scheduling approach in a flexible job shop environment and the effectiveness of the solution.
An Improved Scheduling Approach for Minimizing Total Energy Consumption and Makespan in a Flexible Job Shop Environment
Zhongwei Zhang (author) / Lihui Wu (author) / Tao Peng (author) / Shun Jia (author)
2018
Article (Journal)
Electronic Resource
Unknown
machining system , machine , energy consumption , energy-efficient mechanism , energy-efficient flexible job shop scheduling , non-dominated sorting genetic algorithm-II , Environmental effects of industries and plants , TD194-195 , Renewable energy sources , TJ807-830 , Environmental sciences , GE1-350
Metadata by DOAJ is licensed under CC BY-SA 1.0
Minimizing the Makespan in Flowshop Scheduling for Sustainable Rubber Circular Manufacturing
DOAJ | 2021
|Minimizing the makespan in the 3-machine assembly-type flowshop scheduling problem
Tema Archive | 1993
|A Genetic Algorithm for Flow Shop Scheduling with Assembly Operations to Minimize Makespan
Online Contents | 2014
|A Genetic Algorithm for Flow Shop Scheduling with Assembly Operations to Minimize Makespan
Springer Verlag | 2014
|