A platform for research: civil engineering, architecture and urbanism
Experimental research into the stress-strainstate of high-rise buildings concrete structures Экспериментальное исследование напряженно-деформированного состояния конструкций высотного здания
Some results of high-rise buildings monitoring program are presented in this paper. The monitoring system is currently operating at the high-rise apartment building in Moscow. The vibrating wire strain gauges were embedded in the foundation slab and groundlevel walls during the construction. Measurements are carried out automatically at 6-hour intervals, and received in real time by the monitoring station. In this paper the result of measuring the strain in the concrete walls during 4 years is reported.The computer model of the building was made in order to compare the experimental and predicted data. Mathematical models of a high-rise building are simplified, but we are taking into account the main factors, that influence the stress-strain state of reinforced concrete structures. These factors are: influence of soil base, phases of construction and change of concrete deformation characteristics. The total strain in constructions was calculated as a sum of a strain under load, thermal strain, plastic shrinkage and creep. This data was compared with the total strain in structures measured by the gauges.The analysis of quantitative and qualitative correspondence between the model and actual data was performed. The comparison shows that the theoretical results obtained by the performed procedure are similar to the experimental data. It demonstrates that the model reflects the actual behavior of constructions. The differences found during the comparison are due to the redistribution of stresses from one part of a construction to the other that can occur even if the load is constant. This phenomenon is clearly seen during the suspension of construction. Some differences due to unaccounted factors were found, which should be investigated later.
Проведено сопоставление прогнозируемых деформаций вертикальных несущих конструкций высотного здания с экспериментальными данными, полученными при помощи действующей системы инструментального мониторинга. Моделирование здания и прогноз напряженно-деформированного состояния конструкций выполнен с учетом стадийности возведения здания и изменения деформационных характеристик бетона в процессе строительства. Проведен анализ количественного и качественного соответствия расчетной модели и существующего высотного здания.
Experimental research into the stress-strainstate of high-rise buildings concrete structures Экспериментальное исследование напряженно-деформированного состояния конструкций высотного здания
Some results of high-rise buildings monitoring program are presented in this paper. The monitoring system is currently operating at the high-rise apartment building in Moscow. The vibrating wire strain gauges were embedded in the foundation slab and groundlevel walls during the construction. Measurements are carried out automatically at 6-hour intervals, and received in real time by the monitoring station. In this paper the result of measuring the strain in the concrete walls during 4 years is reported.The computer model of the building was made in order to compare the experimental and predicted data. Mathematical models of a high-rise building are simplified, but we are taking into account the main factors, that influence the stress-strain state of reinforced concrete structures. These factors are: influence of soil base, phases of construction and change of concrete deformation characteristics. The total strain in constructions was calculated as a sum of a strain under load, thermal strain, plastic shrinkage and creep. This data was compared with the total strain in structures measured by the gauges.The analysis of quantitative and qualitative correspondence between the model and actual data was performed. The comparison shows that the theoretical results obtained by the performed procedure are similar to the experimental data. It demonstrates that the model reflects the actual behavior of constructions. The differences found during the comparison are due to the redistribution of stresses from one part of a construction to the other that can occur even if the load is constant. This phenomenon is clearly seen during the suspension of construction. Some differences due to unaccounted factors were found, which should be investigated later.
Проведено сопоставление прогнозируемых деформаций вертикальных несущих конструкций высотного здания с экспериментальными данными, полученными при помощи действующей системы инструментального мониторинга. Моделирование здания и прогноз напряженно-деформированного состояния конструкций выполнен с учетом стадийности возведения здания и изменения деформационных характеристик бетона в процессе строительства. Проведен анализ количественного и качественного соответствия расчетной модели и существующего высотного здания.
Experimental research into the stress-strainstate of high-rise buildings concrete structures Экспериментальное исследование напряженно-деформированного состояния конструкций высотного здания
Almazov Vladlen Ovanesovich (author) / Klimov Alexey Nikolaevich (author)
2013
Article (Journal)
Electronic Resource
Unknown
monitoring , reinforced concrete , experimental data , stress-strain state , high-rise buildings , finite-element model , comparison of predicted and actual data , мониторинг , железобетон , экспериментальные данные , напряженно-деформированное состояние , расчетная модель , высотные здания , Architecture , NA1-9428 , Construction industry , HD9715-9717.5
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2015
|