A platform for research: civil engineering, architecture and urbanism
The Content and Stratification of SOC and Its Humified Fractions Using Different Soil Tillage and Inter-Cropping
Five different tillage systems were researched in a Cambisol of a loam texture in the long-term experiment: conventional ploughing at 22–24 cm (CT), shallow ploughing at 16–18 cm (ShT), harrowing at 8–10 cm (MT1), harrowing at 14–16 cm (MT2), and no tilling (NT). The aim of this study was to determine how different tillage and inter-cropping influence the accumulation and distribution of SOC (soil organic carbon) and its compounds in different soil layers. SOC content changed depending on the soil tillage system and inter-crops used. Stratification ratios (SR) of SOC in the surface soil (0–10 cm) to that in the 10–20 cm (SR1) and 20–30 cm (SR2) were calculated. In our research, SR for SOC varied in the range from 0.97 to 1.35 for SR1 and from 1.02 to 1.99 for SR2. The main conclusion was that inter-crops increased the SOC accumulation in the 0–10 cm layer of all investigated treatments. It was concluded that different soil tillage systems and inter-crops influenced processes of soil carbon changes and affected OM humification in the soil. The formation of humified carbon compounds should be considered not only as a preservation and improvement of the soil productivity, but also as an environmental assessment of their impact on the soil sustainability and reduction in carbon dioxide emissions into the atmosphere. Our results suggest that sustainable tillage and inter-cropping management may contribute to climate mitigation regarding SOC accumulation in soil.
The Content and Stratification of SOC and Its Humified Fractions Using Different Soil Tillage and Inter-Cropping
Five different tillage systems were researched in a Cambisol of a loam texture in the long-term experiment: conventional ploughing at 22–24 cm (CT), shallow ploughing at 16–18 cm (ShT), harrowing at 8–10 cm (MT1), harrowing at 14–16 cm (MT2), and no tilling (NT). The aim of this study was to determine how different tillage and inter-cropping influence the accumulation and distribution of SOC (soil organic carbon) and its compounds in different soil layers. SOC content changed depending on the soil tillage system and inter-crops used. Stratification ratios (SR) of SOC in the surface soil (0–10 cm) to that in the 10–20 cm (SR1) and 20–30 cm (SR2) were calculated. In our research, SR for SOC varied in the range from 0.97 to 1.35 for SR1 and from 1.02 to 1.99 for SR2. The main conclusion was that inter-crops increased the SOC accumulation in the 0–10 cm layer of all investigated treatments. It was concluded that different soil tillage systems and inter-crops influenced processes of soil carbon changes and affected OM humification in the soil. The formation of humified carbon compounds should be considered not only as a preservation and improvement of the soil productivity, but also as an environmental assessment of their impact on the soil sustainability and reduction in carbon dioxide emissions into the atmosphere. Our results suggest that sustainable tillage and inter-cropping management may contribute to climate mitigation regarding SOC accumulation in soil.
The Content and Stratification of SOC and Its Humified Fractions Using Different Soil Tillage and Inter-Cropping
Alvyra Slepetiene (author) / Grazina Kadziene (author) / Skaidre Suproniene (author) / Aida Skersiene (author) / Ona Auskalniene (author)
2024
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Influence of Liming Intensity on Fractions of Humified Organic Carbon in Acid Soil: A Case Study
DOAJ | 2022
|DOAJ | 2023
|Effect of cropping and tillage on the dissipation of PAH contamination in soil
Online Contents | 2004
|Influence of humified organic matter on copper behavior in acid polluted soils
Online Contents | 2010
|