A platform for research: civil engineering, architecture and urbanism
Effect of Plant Growth Regulators on Protease Activity in Forest Floor of Norway Spruce Stand
Soil proteases are involved in organic matter transformation processes and, thus, influence ecosystem nutrient turnovers. Phytohormones, similarly to proteases, are synthesized and secreted into soil by fungi and microorganisms, and regulate plant rhizosphere activity. The aim of this study was to determine the effect of auxins, cytokinins, ethephon, and chlorocholine chloride on spruce forest floor protease activity. It was concluded that the presence of auxins stimulated native proteolytic activity, specifically synthetic auxin 2-naphthoxyacetic acid (16% increase at added quantity of 5 μg) and naturally occurring indole-3-acetic acid (18%, 5 μg). On the contrary, cytokinins, ethephon and chlorocholine chloride inhibited native soil protease activity, where ethephon (36% decrease at 50 μg) and chlorocholine chloride (34%, 100 μg) showed the highest inhibitory effects. It was concluded that negative phytohormonal effects on native proteolytic activity may slow down organic matter decomposition rates and hence complicate plant nutrition. The study enhances the understanding of rhizosphere exudate effects on soil microbial activity and soil nitrogen cycle.
Effect of Plant Growth Regulators on Protease Activity in Forest Floor of Norway Spruce Stand
Soil proteases are involved in organic matter transformation processes and, thus, influence ecosystem nutrient turnovers. Phytohormones, similarly to proteases, are synthesized and secreted into soil by fungi and microorganisms, and regulate plant rhizosphere activity. The aim of this study was to determine the effect of auxins, cytokinins, ethephon, and chlorocholine chloride on spruce forest floor protease activity. It was concluded that the presence of auxins stimulated native proteolytic activity, specifically synthetic auxin 2-naphthoxyacetic acid (16% increase at added quantity of 5 μg) and naturally occurring indole-3-acetic acid (18%, 5 μg). On the contrary, cytokinins, ethephon and chlorocholine chloride inhibited native soil protease activity, where ethephon (36% decrease at 50 μg) and chlorocholine chloride (34%, 100 μg) showed the highest inhibitory effects. It was concluded that negative phytohormonal effects on native proteolytic activity may slow down organic matter decomposition rates and hence complicate plant nutrition. The study enhances the understanding of rhizosphere exudate effects on soil microbial activity and soil nitrogen cycle.
Effect of Plant Growth Regulators on Protease Activity in Forest Floor of Norway Spruce Stand
Ladislav Holik (author) / Jiří Volánek (author) / Valerie Vranová (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Fluxes of inorganic and organic arsenic species in a Norway spruce forest floor
Online Contents | 2007
|DOAJ | 2021
|Tree and stand growth of mature Norway spruce and European beech under long-term ozone fumigation
Online Contents | 2010
|Soil Microbiome Composition along the Natural Norway Spruce Forest Life Cycle
DOAJ | 2021
|