A platform for research: civil engineering, architecture and urbanism
Epiphytic Diatom-Based Biomonitoring in Mediterranean Ponds: Traditional Microscopy versus Metabarcoding Approaches
Benthic diatoms have traditionally been used as bioindicators of aquatic ecosystems. Because diatom-based monitoring of water quality is required by European legislation, molecular-based methods had emerged as useful alternatives to classical methods based on morphological identification using light microscopy. The aim of this study was to test the reliability of DNA metabarcoding combined with High-Throughput Sequencing (HTS) techniques in the bioassessment of the trophic status of 22 Mediterranean shallow ponds in NW Spain. For each pond, the Trophic Diatom Index (TDI) was calculated from inventories obtained by identification using light microscopy (LM) followed by high-throughput sequencing (HTS) at the molecular level. Ponds were subsequently classified into five water quality classes. The results showed a good correspondence between both methods, especially after applying a correction factor that depended on the biovolume of the cells. This correspondence led to the assignment to the same quality class in 59% of the ponds. The determination and quantification of valves or DNA sequences was one of the main pitfalls, which mainly included those related to the variability in the relative abundances of some species. Accordingly, ponds with similar relative abundances for the dominant species were assigned to the same quality class. Moreover, other difficulties leading the discrepancies were the misidentification of some species due to the presence of semi-cryptic taxa, the incompleteness of the reference database and the bioinformatic protocol. Thus, the validation of DNA-based methods for the identification of freshwater diatoms represents an important goal, as an alternative to using traditional methods in Mediterranean shallow ponds.
Epiphytic Diatom-Based Biomonitoring in Mediterranean Ponds: Traditional Microscopy versus Metabarcoding Approaches
Benthic diatoms have traditionally been used as bioindicators of aquatic ecosystems. Because diatom-based monitoring of water quality is required by European legislation, molecular-based methods had emerged as useful alternatives to classical methods based on morphological identification using light microscopy. The aim of this study was to test the reliability of DNA metabarcoding combined with High-Throughput Sequencing (HTS) techniques in the bioassessment of the trophic status of 22 Mediterranean shallow ponds in NW Spain. For each pond, the Trophic Diatom Index (TDI) was calculated from inventories obtained by identification using light microscopy (LM) followed by high-throughput sequencing (HTS) at the molecular level. Ponds were subsequently classified into five water quality classes. The results showed a good correspondence between both methods, especially after applying a correction factor that depended on the biovolume of the cells. This correspondence led to the assignment to the same quality class in 59% of the ponds. The determination and quantification of valves or DNA sequences was one of the main pitfalls, which mainly included those related to the variability in the relative abundances of some species. Accordingly, ponds with similar relative abundances for the dominant species were assigned to the same quality class. Moreover, other difficulties leading the discrepancies were the misidentification of some species due to the presence of semi-cryptic taxa, the incompleteness of the reference database and the bioinformatic protocol. Thus, the validation of DNA-based methods for the identification of freshwater diatoms represents an important goal, as an alternative to using traditional methods in Mediterranean shallow ponds.
Epiphytic Diatom-Based Biomonitoring in Mediterranean Ponds: Traditional Microscopy versus Metabarcoding Approaches
María Borrego-Ramos (author) / Eloy Bécares (author) / Pedro García (author) / Alejandro Nistal (author) / Saúl Blanco (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
DNA metabarcoding effectively quantifies diatom responses to nutrients in streams
Wiley | 2020
|Metabarcoding vs Microscopy: Comparison of Methods To Monitor Phytoplankton Communities
American Chemical Society | 2023
|Nitrogen removal capacity of wetlands: sediment versus epiphytic biofilms
British Library Conference Proceedings | 2007
|