A platform for research: civil engineering, architecture and urbanism
THERMAL CONDUCTIVITY OF HIGHLY POROUS MATERIALS
Heat flux formation patterns and the impact of structural characteristics and the media onto the thermal conductivity of highly porous materials of cellular structure and fiber texture are considered in the article. Peculiarities of heat transmission through the mineral matrix, the porous structure of cells filled by the gas mixture, and heat transmission channels in the media formed by meshed fibers are considered in the article. It is proven that the characteristics of the heat flux travelling through the mineral matrix are determined by its properties (heat conductivity, air and vapour permeability) that depend on the nature of the matrix substance (various dielectrics) and macro characteristics of the system (external and internal temperatures, humidity, and pressure). Conductive heat transmission predominates, and heat conductivity of the mineral matrix is considered as a function of temperature and humidity. Heat transmission through the porous structure depends of the type and the filtration properties of the mineral matrix, as well as the gas properties, including heat conductivity, temperature, density and pressure. Heat fluxes inside aerated concrete are determined by the heat transfer driven by the filtration of the mixture of vapour and air and its convection inside cells. Products made of mineral cotton demonstrate accessible porosity; therefore, heat fluxes are determined by the properties of gas, or the air-vapour mixture under constant pressure. A convective heat flux is primarily dependent on the air permeability of the media and the characteristics (pressures and concentrations) of internal and external surfaces of the material under research.
THERMAL CONDUCTIVITY OF HIGHLY POROUS MATERIALS
Heat flux formation patterns and the impact of structural characteristics and the media onto the thermal conductivity of highly porous materials of cellular structure and fiber texture are considered in the article. Peculiarities of heat transmission through the mineral matrix, the porous structure of cells filled by the gas mixture, and heat transmission channels in the media formed by meshed fibers are considered in the article. It is proven that the characteristics of the heat flux travelling through the mineral matrix are determined by its properties (heat conductivity, air and vapour permeability) that depend on the nature of the matrix substance (various dielectrics) and macro characteristics of the system (external and internal temperatures, humidity, and pressure). Conductive heat transmission predominates, and heat conductivity of the mineral matrix is considered as a function of temperature and humidity. Heat transmission through the porous structure depends of the type and the filtration properties of the mineral matrix, as well as the gas properties, including heat conductivity, temperature, density and pressure. Heat fluxes inside aerated concrete are determined by the heat transfer driven by the filtration of the mixture of vapour and air and its convection inside cells. Products made of mineral cotton demonstrate accessible porosity; therefore, heat fluxes are determined by the properties of gas, or the air-vapour mixture under constant pressure. A convective heat flux is primarily dependent on the air permeability of the media and the characteristics (pressures and concentrations) of internal and external surfaces of the material under research.
THERMAL CONDUCTIVITY OF HIGHLY POROUS MATERIALS
Rumyantsev Boris Mikhaylovich (author) / Zhukov Aleksey Dmitrievich (author) / Smirnova Tatyana Viktorovna (author)
2012
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Thermal conductivity of porous materials
Engineering Index Backfile | 1961
|Calculations of the Thermal Conductivity of Porous Materials
British Library Online Contents | 2006
|Thermal conductivity and mechanical properties of porous concrete materials
British Library Online Contents | 2017
|Thermal conductivity of highly porous ceramic foams with different agar concentrations
British Library Online Contents | 2015
|Thermal highly porous insulation materials made of mineral raw materials
Tema Archive | 2015
|