A platform for research: civil engineering, architecture and urbanism
Improving the high performance concrete (HPC) behaviour in high temperatures
High performance concrete (HPC) is an interesting material that has been long attracting the interest from the scientific and technical community, due to the clear advantages obtained in terms of mechanical strength and durability. Given these better characteristics, HFC, in its various forms, has been gradually replacing normal strength concrete, especially in structures exposed to severe environments. However, the veiy dense microstructure and low permeability typical of HPC can result in explosive spalling under certain thermal and mechanical conditions, such as when concrete is subject to rapid temperature rises, during a f¡re. This behaviour is caused by the build-up of internal water pressure, in the pore structure, during heating, and by stresses originating from thermal deformation gradients. Although there are still a limited number of experimental programs in this area, some researchers have reported that the addition of polypropylene fibers to HPC is a suitable way to avoid explosive spalling under f re conditions. This change in behavior is derived from the fact that polypropylene fibers melt in high temperatures and leave a pathway for heated gas to escape the concrete matrix, therefore allowing the outward migration of water vapor and resulting in the reduction of interned pore pressure. The present research investigates the behavior of high performance concrete on high temperatures, especially when polypropylene fibers are added to the mix.
Improving the high performance concrete (HPC) behaviour in high temperatures
High performance concrete (HPC) is an interesting material that has been long attracting the interest from the scientific and technical community, due to the clear advantages obtained in terms of mechanical strength and durability. Given these better characteristics, HFC, in its various forms, has been gradually replacing normal strength concrete, especially in structures exposed to severe environments. However, the veiy dense microstructure and low permeability typical of HPC can result in explosive spalling under certain thermal and mechanical conditions, such as when concrete is subject to rapid temperature rises, during a f¡re. This behaviour is caused by the build-up of internal water pressure, in the pore structure, during heating, and by stresses originating from thermal deformation gradients. Although there are still a limited number of experimental programs in this area, some researchers have reported that the addition of polypropylene fibers to HPC is a suitable way to avoid explosive spalling under f re conditions. This change in behavior is derived from the fact that polypropylene fibers melt in high temperatures and leave a pathway for heated gas to escape the concrete matrix, therefore allowing the outward migration of water vapor and resulting in the reduction of interned pore pressure. The present research investigates the behavior of high performance concrete on high temperatures, especially when polypropylene fibers are added to the mix.
Improving the high performance concrete (HPC) behaviour in high temperatures
R. Cattelan Antocheves De Lima (author) / L. C. Pinto Da Silva Filho (author) / C. A. Casonato (author)
2003
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Physical Properties and Behaviour of High-Performance Concrete at High Temperatures
British Library Conference Proceedings | 2010
|Behaviour of High Strength Concrete at High Temperatures
NTIS | 1989
|Behaviour of ordinary concrete at high temperatures
TIBKAT | 2003
|Behaviour of ordinary concrete at high temperatures
UB Braunschweig | 2003
|Behaviour of ultra high strength concrete at high temperatures
Tema Archive | 2008
|