A platform for research: civil engineering, architecture and urbanism
Local and General Above-Ground Biomass Functions for Pinus palustris Trees
There is an increasing interest in estimating biomass for longleaf pine (Pinus palustris Mill.), an important tree species in the southeastern U.S. Most of the individual-tree allometric models available for the species are local, relying on stem diameter outside bark at breast height (DBH) and total tree height (HT), but seldom include stand-level variables such as stand age, basal area or stand density. Using the biomass dataset of 296 longleaf pine trees sampled in the southeastern U.S. by different forestry research institutions, we developed a set of local and general systems of tree biomass equations to predict total tree total above-stump biomass, bole biomass outside bark, live branch biomass and live foliage biomass. The local systems were based on DBH or DBH and HT, and the general systems included in addition to DBH and HT, stand-level variables such as age, basal area and stand density. This paper reports the first set of general allometric equations reported for longleaf pine trees. These systems of biomass equations provide tools to support managers in making management decisions for the species in a variety of ecological, silvicultural and economics applications. The systems can be applied to trees growing over a large geographical area and having a wide range of ages and stand characteristics.
Local and General Above-Ground Biomass Functions for Pinus palustris Trees
There is an increasing interest in estimating biomass for longleaf pine (Pinus palustris Mill.), an important tree species in the southeastern U.S. Most of the individual-tree allometric models available for the species are local, relying on stem diameter outside bark at breast height (DBH) and total tree height (HT), but seldom include stand-level variables such as stand age, basal area or stand density. Using the biomass dataset of 296 longleaf pine trees sampled in the southeastern U.S. by different forestry research institutions, we developed a set of local and general systems of tree biomass equations to predict total tree total above-stump biomass, bole biomass outside bark, live branch biomass and live foliage biomass. The local systems were based on DBH or DBH and HT, and the general systems included in addition to DBH and HT, stand-level variables such as age, basal area and stand density. This paper reports the first set of general allometric equations reported for longleaf pine trees. These systems of biomass equations provide tools to support managers in making management decisions for the species in a variety of ecological, silvicultural and economics applications. The systems can be applied to trees growing over a large geographical area and having a wide range of ages and stand characteristics.
Local and General Above-Ground Biomass Functions for Pinus palustris Trees
Carlos A. Gonzalez-Benecke (author) / Dehai Zhao (author) / Lisa J. Samuelson (author) / Timothy A. Martin (author) / Daniel J. Leduc (author) / Steven B. Jack (author)
2018
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Gap-Scale Disturbance Patterns and Processes in a Montane Pinus palustris Woodland
DOAJ | 2022
|Range-Wide Assessment of Recent Longleaf Pine (Pinus palustris Mill.) Area and Regeneration Trends
DOAJ | 2024
|