A platform for research: civil engineering, architecture and urbanism
Mechanical Properties of Sandstone Roof and Surrounding-Rock Control of Mining Roadways Subject to Reservoir Water Disturbance
Sandstone-roofed roadways are susceptible to deformation and failure caused by reservoir-water-induced disturbances, thereby compromising human safety. Using rock-mechanics testing techniques, numerical simulations, and engineering principles, this study investigates the strength, deformation, and pore-structure characteristics of sandstone roofs as well as means to support the surrounding rock structure. The results obtained in this study reveal that the residual strain is proportional to the pore-water pressure, which, in turn, causes a significant reduction in the elastic modulus during the unloading phase. Furthermore, an increase in the pore-water pressure causes the shear failure of specimens in compression. The delay between crack initiation and specimen-volume expansion decreases. Moreover, the specimen demonstrates increased deformation and failure responses to changes in the confining pressure, thereby resulting in accelerated conversion. Changes in water inflow can be correlated to crack initiation, propagation, and fracture. This water inflow gradually increases with an increase in the osmotic pressure. Correspondingly, the volumetric strain required for maximum water inflow undergoes a gradual decrease. The increased water inflow can be considered a precursor to specimen failure. In addition, fractures in the surrounding rock structures are mainly caused by joint dislocations. The increase in pore pressure promotes the development of dislocation fractures in the deep surrounding rocks. Subsequently, these fractures overlap with their open counterparts to form large fractures; this increases the roadway-roof subsidence and layer separation of the shallow surrounding rocks, thereby further increasing the fracture count. Lastly, the use of high-performance rock bolts, cable-bolt reinforcements, and W-shaped steel bands is expected to ensure the stability of rocks surrounding sandstone-roofed roadways subject to water-pressure disturbances.
Mechanical Properties of Sandstone Roof and Surrounding-Rock Control of Mining Roadways Subject to Reservoir Water Disturbance
Sandstone-roofed roadways are susceptible to deformation and failure caused by reservoir-water-induced disturbances, thereby compromising human safety. Using rock-mechanics testing techniques, numerical simulations, and engineering principles, this study investigates the strength, deformation, and pore-structure characteristics of sandstone roofs as well as means to support the surrounding rock structure. The results obtained in this study reveal that the residual strain is proportional to the pore-water pressure, which, in turn, causes a significant reduction in the elastic modulus during the unloading phase. Furthermore, an increase in the pore-water pressure causes the shear failure of specimens in compression. The delay between crack initiation and specimen-volume expansion decreases. Moreover, the specimen demonstrates increased deformation and failure responses to changes in the confining pressure, thereby resulting in accelerated conversion. Changes in water inflow can be correlated to crack initiation, propagation, and fracture. This water inflow gradually increases with an increase in the osmotic pressure. Correspondingly, the volumetric strain required for maximum water inflow undergoes a gradual decrease. The increased water inflow can be considered a precursor to specimen failure. In addition, fractures in the surrounding rock structures are mainly caused by joint dislocations. The increase in pore pressure promotes the development of dislocation fractures in the deep surrounding rocks. Subsequently, these fractures overlap with their open counterparts to form large fractures; this increases the roadway-roof subsidence and layer separation of the shallow surrounding rocks, thereby further increasing the fracture count. Lastly, the use of high-performance rock bolts, cable-bolt reinforcements, and W-shaped steel bands is expected to ensure the stability of rocks surrounding sandstone-roofed roadways subject to water-pressure disturbances.
Mechanical Properties of Sandstone Roof and Surrounding-Rock Control of Mining Roadways Subject to Reservoir Water Disturbance
Bin Ma (author) / Zaiqiang Hu (author) / Xingzhou Chen (author) / Lili Chen (author) / Wei Du (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Surrounding rock control technology of deep large section composite roof mining roadway
DOAJ | 2022
|Roof-top roadways: General plan
Engineering Index Backfile | 1947
|Safety Analysis Control Measures of Multiple Mining Soft Rock Roadways
Online Contents | 2020
|Rock bumps. Roadways. Numerical methods. Hard coal mining
British Library Conference Proceedings | 1999
|