A platform for research: civil engineering, architecture and urbanism
Unveiling the novel role of ryegrass rhizospheric metabolites in benzo[a]pyrene biodegradation
Rhizoremediation is a promising remediation technology for the removal of soil persistent organic pollutants (POPs), especially benzo[a]pyrene (BaP). However, our understanding of the associations among rhizospheric soil metabolites, functional microorganisms, and POPs degradation in different plant growth stages is limited. We combined stable-isotope probing (SIP), high-throughput sequencing, and metabolomics to analyze changes in rhizospheric soil metabolites, functional microbes, and BaP biodegradation in the early growth stages (tillering, jointing) and later stage (booting) of ryegrass. Microbial community structures differed significantly among growth stages. Metabolisms such as benzenoids and carboxylic acids tended to be enriched in the early growth stage, while lipids and organic heterocyclic compounds dominated in the later stage. From SIP, eight BaP-degrading microbes were identified, and most of which such as Ilumatobacter and Singulisphaera were first linked with BaP biodegradation. Notably, the relationship between the differential metabolites and BaP degradation efficiency further suggested that BaP-degrading microbes might metabolize BaP directly to produce benzenoid metabolites (3-hydroxybenzo[a]pyrene), or utilize benzenoids (phyllodulcin) to stimulate the co-metabolism of BaP in early growth stage; some lipids and organic acids, e.g. 1-aminocyclopropane-1-carboxylic acid, might provide nutrients for the degraders to promote BaP metabolism in later stage. Accordingly, we determined that certain rhizospheric metabolites might regulate the rhizospheric microbial communities at different growth stages, and shift the composition and diversity of BaP-degrading bacteria, thereby enhancing in situ BaP degradation. Our study sheds light on POPs rhizoremediation mechanisms in petroleum-contaminated soils.
Unveiling the novel role of ryegrass rhizospheric metabolites in benzo[a]pyrene biodegradation
Rhizoremediation is a promising remediation technology for the removal of soil persistent organic pollutants (POPs), especially benzo[a]pyrene (BaP). However, our understanding of the associations among rhizospheric soil metabolites, functional microorganisms, and POPs degradation in different plant growth stages is limited. We combined stable-isotope probing (SIP), high-throughput sequencing, and metabolomics to analyze changes in rhizospheric soil metabolites, functional microbes, and BaP biodegradation in the early growth stages (tillering, jointing) and later stage (booting) of ryegrass. Microbial community structures differed significantly among growth stages. Metabolisms such as benzenoids and carboxylic acids tended to be enriched in the early growth stage, while lipids and organic heterocyclic compounds dominated in the later stage. From SIP, eight BaP-degrading microbes were identified, and most of which such as Ilumatobacter and Singulisphaera were first linked with BaP biodegradation. Notably, the relationship between the differential metabolites and BaP degradation efficiency further suggested that BaP-degrading microbes might metabolize BaP directly to produce benzenoid metabolites (3-hydroxybenzo[a]pyrene), or utilize benzenoids (phyllodulcin) to stimulate the co-metabolism of BaP in early growth stage; some lipids and organic acids, e.g. 1-aminocyclopropane-1-carboxylic acid, might provide nutrients for the degraders to promote BaP metabolism in later stage. Accordingly, we determined that certain rhizospheric metabolites might regulate the rhizospheric microbial communities at different growth stages, and shift the composition and diversity of BaP-degrading bacteria, thereby enhancing in situ BaP degradation. Our study sheds light on POPs rhizoremediation mechanisms in petroleum-contaminated soils.
Unveiling the novel role of ryegrass rhizospheric metabolites in benzo[a]pyrene biodegradation
Xuan Zhao (author) / Jibing Li (author) / Dayi Zhang (author) / Longfei Jiang (author) / Yujie Wang (author) / Beibei Hu (author) / Shuang Wang (author) / Yeliang Dai (author) / Chunling Luo (author) / Gan Zhang (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Biodegradation of Benzo[a]pyrene in Soil by Immobilized Fungus
British Library Online Contents | 2008
|Rapid Biodegradation of Benzo[a]pyrene by Bacillus subtilis BUM Under Thermophilic Condition
British Library Online Contents | 2010
|British Library Online Contents | 2008
|