A platform for research: civil engineering, architecture and urbanism
Short-Term Multiple Forecasting of Electric Energy Loads for Sustainable Demand Planning in Smart Grids for Smart Homes
Energy consumption in the form of fuel or electricity is ubiquitous globally. Among energy types, electricity is crucial to human life in terms of cooking, warming and cooling of shelters, powering of electronic devices as well as commercial and industrial operations. Users of electronic devices sometimes consume fluctuating amounts of electricity generated from smart-grid infrastructure owned by the government or private investors. However, frequent imbalance is noticed between the demand and supply of electricity, hence effective planning is required to facilitate its distribution among consumers. Such effective planning is stimulated by the need to predict future consumption within a short period. Although several interesting classical techniques have been used for such predictions, they still require improvement for the purpose of reducing significant predictive errors when used for short-term load forecasting. This research develops a near-zero cooperative probabilistic scenario analysis and decision tree (PSA-DT) model to address the lacuna of enormous predictive error faced by the state-of-the-art models. The PSA-DT is based on a probabilistic technique in view of the uncertain nature of electricity consumption, complemented by a DT to reinforce the collaboration of the two techniques. Based on detailed experimental analytics on residential, commercial and industrial data loads, the PSA-DT model outperforms the state-of-the-art models in terms of accuracy to a near-zero error rate. This implies that its deployment for electricity demand planning will be of great benefit to various smart-grid operators and homes.
Short-Term Multiple Forecasting of Electric Energy Loads for Sustainable Demand Planning in Smart Grids for Smart Homes
Energy consumption in the form of fuel or electricity is ubiquitous globally. Among energy types, electricity is crucial to human life in terms of cooking, warming and cooling of shelters, powering of electronic devices as well as commercial and industrial operations. Users of electronic devices sometimes consume fluctuating amounts of electricity generated from smart-grid infrastructure owned by the government or private investors. However, frequent imbalance is noticed between the demand and supply of electricity, hence effective planning is required to facilitate its distribution among consumers. Such effective planning is stimulated by the need to predict future consumption within a short period. Although several interesting classical techniques have been used for such predictions, they still require improvement for the purpose of reducing significant predictive errors when used for short-term load forecasting. This research develops a near-zero cooperative probabilistic scenario analysis and decision tree (PSA-DT) model to address the lacuna of enormous predictive error faced by the state-of-the-art models. The PSA-DT is based on a probabilistic technique in view of the uncertain nature of electricity consumption, complemented by a DT to reinforce the collaboration of the two techniques. Based on detailed experimental analytics on residential, commercial and industrial data loads, the PSA-DT model outperforms the state-of-the-art models in terms of accuracy to a near-zero error rate. This implies that its deployment for electricity demand planning will be of great benefit to various smart-grid operators and homes.
Short-Term Multiple Forecasting of Electric Energy Loads for Sustainable Demand Planning in Smart Grids for Smart Homes
Adeshina Y. Alani (author) / Isaac O. Osunmakinde (author)
2017
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro Grids
BASE | 2014
|Prediction models for short-term load and production forecasting in smart electrical grids
BASE | 2017
|Plans and Planning in Smart Homes
Springer Verlag | 2006
|