A platform for research: civil engineering, architecture and urbanism
The Broken Chloroplast Gene Clusters in Gymnosperms Exhibit Elevated Substitution Rates
Plant chloroplast (cp) gene clusters consist of genes arranged closely together on the cp genome. These genes are organized in operon structures and participate in cotranscription, typically exhibiting conservation. Broken gene clusters have been observed in gymnosperms. In order to investigate whether the substitution rates and selection pressure of associated genes are affected following the disruption of gene clusters, the cp genomes of 80 species (78 gymnosperms and 2 outgroups) were analyzed. A phylogenetic analysis was conducted using 58 shared genes to examine the evolutionary rates and selection pressure of genes associated with gene clusters and protein-coding genes in Sciadopitys verticillata. The results demonstrate that S. verticillata exhibited the highest number of rearrangements compared to the Cycas revoluta genome. Four gene clusters (rps2, psbB, rpoB, and petL clusters) in S. verticillata were disrupted, while rps2 in Callitris rhomboidea experienced disruption. Significantly increased evolutionary rates were observed in 12 out of 18 gene cluster-related genes in S. verticillata. Following disruption, S. verticillata and C. rhomboidea exhibited an increase in gene cluster-related genes, particularly rps2, and higher selection pressure on both rps2 and atpA genes compared to other species. Furthermore, among the 58 genes shared by S. verticillata, the evolutionary rates of 36 genes increased, and the selection pressure on 13 genes exceeded that of other species. These results indicate an increased substitution rate of gene clusters in S. verticillata and C. rhomboidea. The large-scale rearrangement and elevated substitution rates of the cp genome in S. verticillata were revealed. This study sheds light on the heterogeneity of cp genome evolution in gymnosperms.
The Broken Chloroplast Gene Clusters in Gymnosperms Exhibit Elevated Substitution Rates
Plant chloroplast (cp) gene clusters consist of genes arranged closely together on the cp genome. These genes are organized in operon structures and participate in cotranscription, typically exhibiting conservation. Broken gene clusters have been observed in gymnosperms. In order to investigate whether the substitution rates and selection pressure of associated genes are affected following the disruption of gene clusters, the cp genomes of 80 species (78 gymnosperms and 2 outgroups) were analyzed. A phylogenetic analysis was conducted using 58 shared genes to examine the evolutionary rates and selection pressure of genes associated with gene clusters and protein-coding genes in Sciadopitys verticillata. The results demonstrate that S. verticillata exhibited the highest number of rearrangements compared to the Cycas revoluta genome. Four gene clusters (rps2, psbB, rpoB, and petL clusters) in S. verticillata were disrupted, while rps2 in Callitris rhomboidea experienced disruption. Significantly increased evolutionary rates were observed in 12 out of 18 gene cluster-related genes in S. verticillata. Following disruption, S. verticillata and C. rhomboidea exhibited an increase in gene cluster-related genes, particularly rps2, and higher selection pressure on both rps2 and atpA genes compared to other species. Furthermore, among the 58 genes shared by S. verticillata, the evolutionary rates of 36 genes increased, and the selection pressure on 13 genes exceeded that of other species. These results indicate an increased substitution rate of gene clusters in S. verticillata and C. rhomboidea. The large-scale rearrangement and elevated substitution rates of the cp genome in S. verticillata were revealed. This study sheds light on the heterogeneity of cp genome evolution in gymnosperms.
The Broken Chloroplast Gene Clusters in Gymnosperms Exhibit Elevated Substitution Rates
Jingyao Ping (author) / Xiaona Zhong (author) / Ting Wang (author) / Yingjuan Su (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Online Contents | 2010
|Urban elevated bridge broken column jacking construction auxiliary device
European Patent Office | 2024
|Urban elevated bridge broken column jacking construction method and device
European Patent Office | 2024
|Stress redistribution around clusters of broken fibres in a composite
British Library Online Contents | 2017
|Stress redistribution around clusters of broken fibres in a composite
British Library Online Contents | 2017
|