A platform for research: civil engineering, architecture and urbanism
Statistical and Mathematical Modeling for Predicting Caffeine Removal from Aqueous Media by Rice Husk-Derived Activated Carbon
One of the solutions to deal with water crisis problems is using agricultural residue capabilities as low-cost and the most abundant adsorbents for the elimination of pollutants from aqueous media. This research assessed the potential of activated carbon obtained from rice husk (RHAC) to eliminate caffeine from aqueous media. For this, the impact of diverse parameters, including initial caffeine concentration (C0), RHAC dosage (Cs), contact time (t), and solution pH, was considered on adsorption capacity. The maximum caffeine uptake capacity of 239.67 mg/g was obtained under the optimum conditions at an RHAC dose of 0.5 g, solution pH of 6, contact time of 120 min, and initial concentration of 80 mg/L. The best fit of adsorption process data on pseudo-first-order kinetics and Freundlich isotherm indicated the presence of heterogeneous and varying pores of the RHAC, multilayer adsorption, and adsorption at local sites without any interaction. Additionally, modeling the adsorption by using statistical and mathematical models, including classification and regression tree (CART), multiple linear regression (MLR), random forest regression (RFR), Bayesian multiple linear regression (BMLR), lasso regression (LR), and ridge regression (RR), revealed the greater impact of C0 and Cs in predicting adsorption capacity. Moreover, the RFR model performs better than other models due to the highest determination coefficient (R2 = 0.9517) and the slightest error (RMSE = 2.28).
Statistical and Mathematical Modeling for Predicting Caffeine Removal from Aqueous Media by Rice Husk-Derived Activated Carbon
One of the solutions to deal with water crisis problems is using agricultural residue capabilities as low-cost and the most abundant adsorbents for the elimination of pollutants from aqueous media. This research assessed the potential of activated carbon obtained from rice husk (RHAC) to eliminate caffeine from aqueous media. For this, the impact of diverse parameters, including initial caffeine concentration (C0), RHAC dosage (Cs), contact time (t), and solution pH, was considered on adsorption capacity. The maximum caffeine uptake capacity of 239.67 mg/g was obtained under the optimum conditions at an RHAC dose of 0.5 g, solution pH of 6, contact time of 120 min, and initial concentration of 80 mg/L. The best fit of adsorption process data on pseudo-first-order kinetics and Freundlich isotherm indicated the presence of heterogeneous and varying pores of the RHAC, multilayer adsorption, and adsorption at local sites without any interaction. Additionally, modeling the adsorption by using statistical and mathematical models, including classification and regression tree (CART), multiple linear regression (MLR), random forest regression (RFR), Bayesian multiple linear regression (BMLR), lasso regression (LR), and ridge regression (RR), revealed the greater impact of C0 and Cs in predicting adsorption capacity. Moreover, the RFR model performs better than other models due to the highest determination coefficient (R2 = 0.9517) and the slightest error (RMSE = 2.28).
Statistical and Mathematical Modeling for Predicting Caffeine Removal from Aqueous Media by Rice Husk-Derived Activated Carbon
Mehdi Bahrami (author) / Mohammad Javad Amiri (author) / Mohammad Reza Mahmoudi (author) / Anahita Zare (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Efficient Decontamination: Caffeine/Triclosan Removal using Rice Husk in Batch and Fixed-Bed Columns
DOAJ | 2024
|Hybrid supercapacitors integrated rice husk based activated carbon with LiMn2O4
American Institute of Physics | 2015
|EXTRACTION OF CONCRETE ACCELERATOR ADMIXTURE AND ACTIVATED CARBON FROM RICE HUSK ASH
European Patent Office | 2024
|