A platform for research: civil engineering, architecture and urbanism
Performance of high capacity socketed H-piles with long rock socket
The pile capacity is commonly calculated by the engineers as the lesser of its structural capacity and the ultimate resistance of ground supporting it using a generalized equation irrespective of the shaft type, socket diameter, socket length, rock type and grout strength. This equation may be over-simplified and risky if the pile/grout/rock interaction is not considered. Based on the loading tests of 6 instrumented socketed piles with 4–6 m rock socket by others and 35 non-instrumented socketed H-piles with 5–34 m rock socket by the author, the load-transfer mechanism in long rock socket is found dependent not only on the mobilization of shear resistance in soil and rock layers, but also largely on the steel/grout bond behavior. A side resistance distribution factor αs is introduced as a simple and practical index to represent the load-transfer mechanism along the pile shaft and to the socket. It would increase with an increase in loading and pile length in soils, but decrease with an increase in socket length indicating that critical socket length does exist which is likely depending on the grout bond strength. Average bond stress reduces with increased socket length when the critical socket length is exceeded. Residual settlement is largely due to the slip and bond failure at the interface. Creep settlement is largely affected by the properties of grout mix and tends to increase with increased socket length.
Performance of high capacity socketed H-piles with long rock socket
The pile capacity is commonly calculated by the engineers as the lesser of its structural capacity and the ultimate resistance of ground supporting it using a generalized equation irrespective of the shaft type, socket diameter, socket length, rock type and grout strength. This equation may be over-simplified and risky if the pile/grout/rock interaction is not considered. Based on the loading tests of 6 instrumented socketed piles with 4–6 m rock socket by others and 35 non-instrumented socketed H-piles with 5–34 m rock socket by the author, the load-transfer mechanism in long rock socket is found dependent not only on the mobilization of shear resistance in soil and rock layers, but also largely on the steel/grout bond behavior. A side resistance distribution factor αs is introduced as a simple and practical index to represent the load-transfer mechanism along the pile shaft and to the socket. It would increase with an increase in loading and pile length in soils, but decrease with an increase in socket length indicating that critical socket length does exist which is likely depending on the grout bond strength. Average bond stress reduces with increased socket length when the critical socket length is exceeded. Residual settlement is largely due to the slip and bond failure at the interface. Creep settlement is largely affected by the properties of grout mix and tends to increase with increased socket length.
Performance of high capacity socketed H-piles with long rock socket
Arthur K.O. So (author)
2024
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
A DEM-Based Factor to Design Rock-Socketed Piles Considering Socket Roughness
Online Contents | 2021
|Socket Roughness Effect on Side Shear Resistance Prediction of Rock-Socketed Piles
BASE | 2019
|A DEM-Based Factor to Design Rock-Socketed Piles Considering Socket Roughness
BASE | 2021
|Case Studies of Rock-Socketed Piles
British Library Online Contents | 1996
|Centrifuge Tests On Rock-Socketed Piles: Effect Of Socket Roughness On Shaft Resistance
BASE | 2021
|