A platform for research: civil engineering, architecture and urbanism
In this paper, a semi-analytical solution for free vibration differential equations of curved girders is proposed based on their mathematical properties and vibration characteristics. The solutions of in-plane vibration differential equations are classified into two cases: one only considers variable separation of non-longitudinal vibration, while the other is a synthesis method addressing both longitudinal and non-longitudinal vibration using Rayleigh’s modal assumption and variable separation method. A similar approach is employed for the out of- plane vibration, but further mathematical operations are conducted to incorporate the coupling effect of bending and twisting. In this case study, the natural frequencies of a curved girder under different boundary conditions are obtained using the two proposed methods, respectively. The results are compared with those from the finite element analysis (FEA) and results show good convergence.
In this paper, a semi-analytical solution for free vibration differential equations of curved girders is proposed based on their mathematical properties and vibration characteristics. The solutions of in-plane vibration differential equations are classified into two cases: one only considers variable separation of non-longitudinal vibration, while the other is a synthesis method addressing both longitudinal and non-longitudinal vibration using Rayleigh’s modal assumption and variable separation method. A similar approach is employed for the out of- plane vibration, but further mathematical operations are conducted to incorporate the coupling effect of bending and twisting. In this case study, the natural frequencies of a curved girder under different boundary conditions are obtained using the two proposed methods, respectively. The results are compared with those from the finite element analysis (FEA) and results show good convergence.
Semi-Analytical Solution for Free Vibration Differential Equations of Curved Girders
2017
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Semi-Analytical Solution for Free Vibration Differential Equations of Curved Girders
Online Contents | 2017
|Online Contents | 1998
Horizontally Curved Steel Girders
Wiley | 2010
|ASCE | 2021
|Engineering Index Backfile | 1959
|