A platform for research: civil engineering, architecture and urbanism
Modified Maximum Pseudo Likelihood Method of Copula Parameter Estimation for Skewed Hydrometeorological Data
For multivariate frequency analysis of hydrometeorological data, the copula model is commonly used to construct joint probability distribution due to its flexibility and simplicity. The Maximum Pseudo-Likelihood (MPL) method is one of the most widely used methods for fitting a copula model. The MPL method was derived from the Weibull plotting position formula assuming a uniform distribution. Because extreme hydrometeorological data are often positively skewed, capacity of the MPL method may not be fully utilized. This study proposes the modified MPL (MMPL) method to improve the MPL method by taking into consideration the skewness of the data. In the MMPL method, the Weibull plotting position formula in the original MPL method is replaced with the formulas which can consider the skewness of the data. The Monte-Carlo simulation has been performed under various conditions in order to assess the performance of the proposed method with the Gumbel copula model. The proposed MMPL method provides more precise parameter estimates than does the MPL method for positively skewed hydrometeorological data based on the simulation results. The MMPL method would be a better alternative for fitting the copula model to the skewed data sets. Additionally, applications of the MMPL methods were performed on the two weather stations (Seosan and Yeongwol) in South Korea.
Modified Maximum Pseudo Likelihood Method of Copula Parameter Estimation for Skewed Hydrometeorological Data
For multivariate frequency analysis of hydrometeorological data, the copula model is commonly used to construct joint probability distribution due to its flexibility and simplicity. The Maximum Pseudo-Likelihood (MPL) method is one of the most widely used methods for fitting a copula model. The MPL method was derived from the Weibull plotting position formula assuming a uniform distribution. Because extreme hydrometeorological data are often positively skewed, capacity of the MPL method may not be fully utilized. This study proposes the modified MPL (MMPL) method to improve the MPL method by taking into consideration the skewness of the data. In the MMPL method, the Weibull plotting position formula in the original MPL method is replaced with the formulas which can consider the skewness of the data. The Monte-Carlo simulation has been performed under various conditions in order to assess the performance of the proposed method with the Gumbel copula model. The proposed MMPL method provides more precise parameter estimates than does the MPL method for positively skewed hydrometeorological data based on the simulation results. The MMPL method would be a better alternative for fitting the copula model to the skewed data sets. Additionally, applications of the MMPL methods were performed on the two weather stations (Seosan and Yeongwol) in South Korea.
Modified Maximum Pseudo Likelihood Method of Copula Parameter Estimation for Skewed Hydrometeorological Data
Kyungwon Joo (author) / Ju-Young Shin (author) / Jun-Haeng Heo (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Online Contents | 2015
|British Library Online Contents | 2015
|Optimal moment determination in POME-copula based hydrometeorological dependence modelling
British Library Online Contents | 2017
|A modified generalized likelihood uncertainty estimation method by using Copula function
British Library Conference Proceedings | 2009
|A multivariate maximum likelihood method for modal parameter estimation
British Library Conference Proceedings | 1999
|