A platform for research: civil engineering, architecture and urbanism
Enhancing Multifunctionality in Agricultural Landscapes with Native Woody Vegetation
The re-integration of native woody vegetation within agricultural areas has the potential to support multifunctional productive landscapes that enhance livestock welfare and restore habitat for native wildlife. As there is minimal research on this issue in Aotearoa New Zealand, this study aimed to identify species of native woody vegetation and propose spatial configurations and site designs to increase multifunctionality on a case study site. The three components of a multifunctional agricultural landscape focused on in this study were (1) enhancing foraging opportunities for livestock, (2) optimizing shade and shelter, and (3) establishing native bush bird habitat. During the first phase, sixty-three suitable species were identified and assigned scores based on the primary objectives and site constraints. This produced four optimized plant lists, one each for the three multifunctional components identified above and one combined multifunctional list incorporating those scores with additional environment and soil scores. The second phase used design thinking methodology to strategically locate these plants within an established case study site. Nine different planting configurations (three for each multifunctional component) were proposed and then, informed by site-specific opportunities and constraints, located on the case study site to produce three individual site designs. Finally, these three site designs were combined to propose an exemplar of a multifunctional agricultural landscape. The results indicate that reintegrating native woody vegetation has the potential to contribute toward multifunctional agricultural landscapes, proposing species and spatial layouts from which further investigation into livestock foraging, increased shade and shelter, and restoration of bush bird habitat can follow. This research advances sustainable land management practices by offering valuable insights into future agricultural landscape design.
Enhancing Multifunctionality in Agricultural Landscapes with Native Woody Vegetation
The re-integration of native woody vegetation within agricultural areas has the potential to support multifunctional productive landscapes that enhance livestock welfare and restore habitat for native wildlife. As there is minimal research on this issue in Aotearoa New Zealand, this study aimed to identify species of native woody vegetation and propose spatial configurations and site designs to increase multifunctionality on a case study site. The three components of a multifunctional agricultural landscape focused on in this study were (1) enhancing foraging opportunities for livestock, (2) optimizing shade and shelter, and (3) establishing native bush bird habitat. During the first phase, sixty-three suitable species were identified and assigned scores based on the primary objectives and site constraints. This produced four optimized plant lists, one each for the three multifunctional components identified above and one combined multifunctional list incorporating those scores with additional environment and soil scores. The second phase used design thinking methodology to strategically locate these plants within an established case study site. Nine different planting configurations (three for each multifunctional component) were proposed and then, informed by site-specific opportunities and constraints, located on the case study site to produce three individual site designs. Finally, these three site designs were combined to propose an exemplar of a multifunctional agricultural landscape. The results indicate that reintegrating native woody vegetation has the potential to contribute toward multifunctional agricultural landscapes, proposing species and spatial layouts from which further investigation into livestock foraging, increased shade and shelter, and restoration of bush bird habitat can follow. This research advances sustainable land management practices by offering valuable insights into future agricultural landscape design.
Enhancing Multifunctionality in Agricultural Landscapes with Native Woody Vegetation
James Eggers (author) / Shannon Davis (author) / Crile Doscher (author) / Pablo Gregorini (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Non-Forest Woody Vegetation: A Critical Resource for Pollinators in Agricultural Landscapes—A Review
DOAJ | 2023
|