A platform for research: civil engineering, architecture and urbanism
Cyclic behavior of late quaternary alluvial soil along Indo-Gangetic Plain: Northern India
Abstract The A.D. 1803 and 1934 Bihar-Nepal border earthquake affected Indo-Gangetic Plain with evidences of liquefaction in cities like Patna, Varanasi, Agra, and Delhi in historical past. Recent strong shaking all along the Indo-Gangetic Plains and seismic induced damage to the buildings in Bihar during Mw 7.8 Gorkha earthquake raises the concern for site specific liquefaction potential estimation of alluvial soils. Cyclic triaxial tests were conducted on soil samples from Kanpur, Allahabad, Patna city to know the cyclic behavior, estimate the dynamic soil properties and the effect of relative density, confining pressure and frequency of loading on the cyclic behavior of the soil tested. The test results indicate the cyclic strength of Allahabad soil is less than Patna and Kanpur soil. The Allahabad soil with 80% sand, 10% silt and clay each is more prone to liquefaction than Kanpur soil (82% silt, 16% clay and 2% sand) and Patna soil (10% Kankar, 95% sand, 5% silt). This study indicates soils having sand with silt percentage are more liquefiable than clean sand or silty soil. It can be concluded that the soil of Allahabad and Patna city is more prone to liquefaction than Kanpur soil.
Cyclic behavior of late quaternary alluvial soil along Indo-Gangetic Plain: Northern India
Abstract The A.D. 1803 and 1934 Bihar-Nepal border earthquake affected Indo-Gangetic Plain with evidences of liquefaction in cities like Patna, Varanasi, Agra, and Delhi in historical past. Recent strong shaking all along the Indo-Gangetic Plains and seismic induced damage to the buildings in Bihar during Mw 7.8 Gorkha earthquake raises the concern for site specific liquefaction potential estimation of alluvial soils. Cyclic triaxial tests were conducted on soil samples from Kanpur, Allahabad, Patna city to know the cyclic behavior, estimate the dynamic soil properties and the effect of relative density, confining pressure and frequency of loading on the cyclic behavior of the soil tested. The test results indicate the cyclic strength of Allahabad soil is less than Patna and Kanpur soil. The Allahabad soil with 80% sand, 10% silt and clay each is more prone to liquefaction than Kanpur soil (82% silt, 16% clay and 2% sand) and Patna soil (10% Kankar, 95% sand, 5% silt). This study indicates soils having sand with silt percentage are more liquefiable than clean sand or silty soil. It can be concluded that the soil of Allahabad and Patna city is more prone to liquefaction than Kanpur soil.
Cyclic behavior of late quaternary alluvial soil along Indo-Gangetic Plain: Northern India
Sambit Prasanajit Naik (author) / Nihar Ranjan Patra (author) / Javed N. Malik (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Assessment of Liquefaction Potential of Alluvial Soil of Indo-Gangetic Interfluves, Northern India
British Library Conference Proceedings | 2012
|Aerosol indirect effect over Indo-Gangetic plain
Elsevier | 2007
|Studying Urban Growth Dynamics in Indo-Gangetic Plain
Springer Verlag | 2023
|Ground response analysis of Kanpur soil along Indo-Gangetic Plains
British Library Online Contents | 2013
|