A platform for research: civil engineering, architecture and urbanism
From Hazardous Chrysotile and Polyamide Wastes into Sustainable Serpentine/Polyamide Nanocomposite Membrane: Fabrication, Characterization, and Environmental Application
Sustainable serpentine/polyamide nanocomposite (SP/PAM) was fabricated using malicious mining (serpentine chrysotile, SP Ctl) and industrial (polyamide, PA6) wastes via the electro-spinning technique. Before fabrication, the fibrous nature of Ctl was demolished through intensive grinding into nano-fractions. The successful impregnation of Ctl within PA6 via the electro-spinning technique at fixed ratios of precursor raw materials in the dissolving agent (7.5/92.5% SP/PA wt/wt solid/solid) created an internal network structure within the polymer fibers by molecular self-assembly. SP/PAM showcased its prowess in tackling the remediation of diverse dyes and Fe(III) from synthetic solutions in a batch system. Based on correlation coefficient outcomes (R2 ≈ 0.999), the pseudo-second-order equation justified the sorption data in an adequate way for all contaminants. In addition, intra-particle diffusion was not the only driving factor in the sorption process. Similarly, the Langmuir equation with maximum removal capacity (qmax) 5.97, 4.33, and 5.36 mg/g for MO, MB, and Fe(Ⅲ), respectively, defined the sorption data better than Freundlich.
From Hazardous Chrysotile and Polyamide Wastes into Sustainable Serpentine/Polyamide Nanocomposite Membrane: Fabrication, Characterization, and Environmental Application
Sustainable serpentine/polyamide nanocomposite (SP/PAM) was fabricated using malicious mining (serpentine chrysotile, SP Ctl) and industrial (polyamide, PA6) wastes via the electro-spinning technique. Before fabrication, the fibrous nature of Ctl was demolished through intensive grinding into nano-fractions. The successful impregnation of Ctl within PA6 via the electro-spinning technique at fixed ratios of precursor raw materials in the dissolving agent (7.5/92.5% SP/PA wt/wt solid/solid) created an internal network structure within the polymer fibers by molecular self-assembly. SP/PAM showcased its prowess in tackling the remediation of diverse dyes and Fe(III) from synthetic solutions in a batch system. Based on correlation coefficient outcomes (R2 ≈ 0.999), the pseudo-second-order equation justified the sorption data in an adequate way for all contaminants. In addition, intra-particle diffusion was not the only driving factor in the sorption process. Similarly, the Langmuir equation with maximum removal capacity (qmax) 5.97, 4.33, and 5.36 mg/g for MO, MB, and Fe(Ⅲ), respectively, defined the sorption data better than Freundlich.
From Hazardous Chrysotile and Polyamide Wastes into Sustainable Serpentine/Polyamide Nanocomposite Membrane: Fabrication, Characterization, and Environmental Application
Amal H. El Maghrabi (author) / Mohmmed M. El-Rabiee (author) / Bahaa S. Metwally (author) / Mostafa A. Masoud (author) / Mohamed H. Abdelaziz (author) / Petros Petrounias (author) / Nikolaos Koukouzas (author) / Ahmed M. Zayed (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Fabrication and characterization of polyamide 6-functionalized graphene nanocomposite fiber
British Library Online Contents | 2012
|British Library Online Contents | 2016
|Bulk Fatigue Damage Evolution in Polyamide-6 and in a Polyamide-6 Nanocomposite
British Library Online Contents | 2005
|Charge modified polyamide membrane
Elsevier | 1988
Transmission efficiency of polyamide nanocomposite spur gears
British Library Online Contents | 2012
|