A platform for research: civil engineering, architecture and urbanism
Combining an R-Based Evolutionary Algorithm and Hydrological Model for Effective Parameter Calibration
The hydrological model assessment and development (hydromad) modeling package is an R-based package that can be applied to simulate hydrological models and optimize parameters. As the hydromad package is incompatible with hydrological models outside the package, the parameters of such models cannot be directly optimized. Hence, we proposed a method of optimizing the hydrological-model parameters by combining the executable (EXE) file of the hydrological model with the shuffled complex evolution (SCE) algorithm provided by the hydromad package. A physically based, spatially distributed, grid-based rainfall–runoff model (GRM) was employed. By calibrating the parameters of the GRM, the performance of the model was found to be reasonable. Thus, the hydromad can be used to optimize the hydrological-model parameters outside the package if the EXE file of the hydrological model is available. The time required to optimize the parameters depends on the type of event, even for the same catchment area.
Combining an R-Based Evolutionary Algorithm and Hydrological Model for Effective Parameter Calibration
The hydrological model assessment and development (hydromad) modeling package is an R-based package that can be applied to simulate hydrological models and optimize parameters. As the hydromad package is incompatible with hydrological models outside the package, the parameters of such models cannot be directly optimized. Hence, we proposed a method of optimizing the hydrological-model parameters by combining the executable (EXE) file of the hydrological model with the shuffled complex evolution (SCE) algorithm provided by the hydromad package. A physically based, spatially distributed, grid-based rainfall–runoff model (GRM) was employed. By calibrating the parameters of the GRM, the performance of the model was found to be reasonable. Thus, the hydromad can be used to optimize the hydrological-model parameters outside the package if the EXE file of the hydrological model is available. The time required to optimize the parameters depends on the type of event, even for the same catchment area.
Combining an R-Based Evolutionary Algorithm and Hydrological Model for Effective Parameter Calibration
Mun-Ju Shin (author) / Yun Seok Choi (author)
2018
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
The Role of Hydrological Signatures in Calibration of Conceptual Hydrological Model
DOAJ | 2020
|