A platform for research: civil engineering, architecture and urbanism
Optimización multirespuesta para mejora de la calidad. Comparación de enfoque clásico con el enfoque bayesiano y el de redes neuronales
El trabajo tiene por objetivo revisar las metodologías existentes sobre optimización multirespuesta, integrarlas en una sola y desarrollar un nuevo algoritmo que permita superar las limitaciones existentes.Para tal efecto se revisaron las metodologías de optimización estadística mediante metodología de superficie de respuesta tradicional,con diseño robusto; seguidamente se revisó la aplicación del enfoque bayesiano a lo obtenido con la estadística tradicional; y finalmente se revisaron aplicaciones de redes neuronales artificiales a casos de optimización. Luego de realizar el análisis y discusión sobre el tema se integrólas tres metodologías en una sola, habiendo desarrollado un nuevo algoritmo que permite superar las limitaciones y deficiencias de los métodos anteriores. Asimismo, se compararon los resultados obtenidos con otros métodos con los que se obtendrían con el nuevo método, siendo resultado favorable.Por tanto se ha desarrollado una metodología de optimización multirespuesta que considera relaciones lineales y no lineales, que tiene las cualidades de lasmetodologías de la estadistica tradicional,la estadística bayesiana, y las redes neuronales artificiales.
Optimización multirespuesta para mejora de la calidad. Comparación de enfoque clásico con el enfoque bayesiano y el de redes neuronales
El trabajo tiene por objetivo revisar las metodologías existentes sobre optimización multirespuesta, integrarlas en una sola y desarrollar un nuevo algoritmo que permita superar las limitaciones existentes.Para tal efecto se revisaron las metodologías de optimización estadística mediante metodología de superficie de respuesta tradicional,con diseño robusto; seguidamente se revisó la aplicación del enfoque bayesiano a lo obtenido con la estadística tradicional; y finalmente se revisaron aplicaciones de redes neuronales artificiales a casos de optimización. Luego de realizar el análisis y discusión sobre el tema se integrólas tres metodologías en una sola, habiendo desarrollado un nuevo algoritmo que permite superar las limitaciones y deficiencias de los métodos anteriores. Asimismo, se compararon los resultados obtenidos con otros métodos con los que se obtendrían con el nuevo método, siendo resultado favorable.Por tanto se ha desarrollado una metodología de optimización multirespuesta que considera relaciones lineales y no lineales, que tiene las cualidades de lasmetodologías de la estadistica tradicional,la estadística bayesiana, y las redes neuronales artificiales.
Optimización multirespuesta para mejora de la calidad. Comparación de enfoque clásico con el enfoque bayesiano y el de redes neuronales
Juan Cevallos Ampuero (author)
2012
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
APLICACIÓN DE REDES NEURONALES PARA OPTIMIZAR PROBLEMAS MULTIRESPUESTA EN MEJORA DE LA CALIDAD
DOAJ | 2004
|Mejora de la calidad aplicando la metodologia de superficie respuesta y redes neuronales
DOAJ | 2006
|MEJORA DE PROCESOS UTILIZANDO RESPUESTAS CUALITATIVAS MEDIANTE EL USO DE REDES NEURONALES
DOAJ | 2005
|