A platform for research: civil engineering, architecture and urbanism
Monitoring Forest Phenology in a Changing World
Plant phenology is strongly interlinked with ecosystem processes and biodiversity. Like many other aspects of ecosystem functioning, it is affected by habitat and climate change, with both global change drivers altering the timings and frequency of phenological events. As such, there has been an increased focus in recent years to monitor phenology in different biomes. A range of approaches for monitoring phenology have been developed to increase our understanding on its role in ecosystems, ranging from the use of satellites and drones to collection traps, each with their own merits and limitations. Here, we outline the trade-offs between methods (spatial resolution, temporal resolution, cost, data processing), and discuss how their use can be optimised in different environments and for different goals. We also emphasise emerging technologies that will be the focus of monitoring in the years to follow and the challenges of monitoring phenology that still need to be addressed. We conclude that there is a need to integrate studies that incorporate multiple monitoring methods, allowing the strengths of one to compensate for the weaknesses of another, with a view to developing robust methods for upscaling phenological observations from point locations to biome and global scales and reconciling data from varied sources and environments. Such developments are needed if we are to accurately quantify the impacts of a changing world on plant phenology.
Monitoring Forest Phenology in a Changing World
Plant phenology is strongly interlinked with ecosystem processes and biodiversity. Like many other aspects of ecosystem functioning, it is affected by habitat and climate change, with both global change drivers altering the timings and frequency of phenological events. As such, there has been an increased focus in recent years to monitor phenology in different biomes. A range of approaches for monitoring phenology have been developed to increase our understanding on its role in ecosystems, ranging from the use of satellites and drones to collection traps, each with their own merits and limitations. Here, we outline the trade-offs between methods (spatial resolution, temporal resolution, cost, data processing), and discuss how their use can be optimised in different environments and for different goals. We also emphasise emerging technologies that will be the focus of monitoring in the years to follow and the challenges of monitoring phenology that still need to be addressed. We conclude that there is a need to integrate studies that incorporate multiple monitoring methods, allowing the strengths of one to compensate for the weaknesses of another, with a view to developing robust methods for upscaling phenological observations from point locations to biome and global scales and reconciling data from varied sources and environments. Such developments are needed if we are to accurately quantify the impacts of a changing world on plant phenology.
Monitoring Forest Phenology in a Changing World
Ross E. J. Gray (author) / Robert M. Ewers (author)
2021
Article (Journal)
Electronic Resource
Unknown
drones , ecosystem change , methods , monitoring , phenology , remote sensing , Plant ecology , QK900-989
Metadata by DOAJ is licensed under CC BY-SA 1.0
Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS
Online Contents | 2006
|Monitoring vegetation phenology using MODIS
Online Contents | 2003
|Remote-sensing monitoring of desertification, phenology, and droughts
Online Contents | 2003
|