A platform for research: civil engineering, architecture and urbanism
Integrated Drip Irrigation Regulates Soil Water–Salt Movement to Improve Water Use Efficiency and Maize Yield in Saline–Alkali Soil
Soil salinization is a critical issue impacting agriculture, particularly in arid and semi-arid regions. The objective of this study was to evaluate the effects of different drip irrigation and fertilization treatments on soil water and salt dynamics, maize water use efficiency, and crop yield in the saline–alkali soils of northern Ningxia, China. Over three years, four irrigation treatments were tested: CK (flood irrigation, 810 mm), W1 (low-volume drip irrigation, 360 mm), W2 (medium-volume drip irrigation, 450 mm), and W3 (high-volume drip irrigation, 540 mm). The results demonstrate that treatments W2 and W3 significantly increased soil moisture content at depths of 0–20 cm and 60–100 cm compared to CK, facilitating uniform salt leaching in the 0–40 cm soil layer. However, in the 40–100 cm layer, decreased porosity and upward moisture movement hindered salt migration, resulting in subsurface salt accumulation. Furthermore, drip irrigation combined with fertilization significantly reduced phosphorus fixation and nitrogen leaching, enhancing nutrient availability. This led to a reduction in underground leakage and surface evaporation by up to 39.63%, while water use efficiency improved by 18.97% to 55.13%. By the third year, grain yields under drip irrigation treatments increased significantly compared to CK, with W3 showing the highest gains (up to 21.90%). This study highlights the potential of integrating drip irrigation and fertilization as an effective strategy for managing saline–alkali soils, improving water use, and increasing crop productivity, providing valuable insights for sustainable agricultural practices.
Integrated Drip Irrigation Regulates Soil Water–Salt Movement to Improve Water Use Efficiency and Maize Yield in Saline–Alkali Soil
Soil salinization is a critical issue impacting agriculture, particularly in arid and semi-arid regions. The objective of this study was to evaluate the effects of different drip irrigation and fertilization treatments on soil water and salt dynamics, maize water use efficiency, and crop yield in the saline–alkali soils of northern Ningxia, China. Over three years, four irrigation treatments were tested: CK (flood irrigation, 810 mm), W1 (low-volume drip irrigation, 360 mm), W2 (medium-volume drip irrigation, 450 mm), and W3 (high-volume drip irrigation, 540 mm). The results demonstrate that treatments W2 and W3 significantly increased soil moisture content at depths of 0–20 cm and 60–100 cm compared to CK, facilitating uniform salt leaching in the 0–40 cm soil layer. However, in the 40–100 cm layer, decreased porosity and upward moisture movement hindered salt migration, resulting in subsurface salt accumulation. Furthermore, drip irrigation combined with fertilization significantly reduced phosphorus fixation and nitrogen leaching, enhancing nutrient availability. This led to a reduction in underground leakage and surface evaporation by up to 39.63%, while water use efficiency improved by 18.97% to 55.13%. By the third year, grain yields under drip irrigation treatments increased significantly compared to CK, with W3 showing the highest gains (up to 21.90%). This study highlights the potential of integrating drip irrigation and fertilization as an effective strategy for managing saline–alkali soils, improving water use, and increasing crop productivity, providing valuable insights for sustainable agricultural practices.
Integrated Drip Irrigation Regulates Soil Water–Salt Movement to Improve Water Use Efficiency and Maize Yield in Saline–Alkali Soil
2024
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Soil Salt Accumulation and Crop Yield under Long-Term Irrigation with Saline Water
British Library Online Contents | 2015
|