A platform for research: civil engineering, architecture and urbanism
Significance of Parallel Computing on the Performance of Digital Image Correlation Algorithms in MATLAB
Digital Image Correlation (DIC) is a powerful tool used to evaluate displacements and deformations in a non-intrusive manner. By comparing two images, one from the undeformed reference states of the sample and the other from the deformed target state, the relative displacement between the two states is determined. DIC is well-known and often used for post-processing analysis of in-plane displacements and deformation of the specimen. Increasing the analysis speed to enable real-time DIC analysis will be beneficial and expand the scope of this method. Here we tested several combinations of the most common DIC methods in combination with different parallelization approaches in MATLAB and evaluated their performance to determine whether the real-time analysis is possible with these methods. The effects of computing with different hardware settings were also analyzed and discussed. We found that implementation problems can reduce the efficiency of a theoretically superior algorithm, such that it becomes practically slower than a sub-optimal algorithm. The Newton–Raphson algorithm in combination with a modified particle swarm algorithm in parallel image computation was found to be most effective. This is contrary to theory, suggesting that the inverse-compositional Gauss–Newton algorithm is superior. As expected, the brute force search algorithm is the least efficient method. We also found that the correct choice of parallelization tasks is critical in attaining improvements in computing speed. A poorly chosen parallelization approach with high parallel overhead leads to inferior performance. Finally, irrespective of the computing mode, the correct choice of combinations of integer-pixel and sub-pixel search algorithms is critical for efficient analysis. The real-time analysis using DIC will be difficult on computers with standard computing capabilities, even if parallelization is implemented, so the suggested solution would be to use graphics processing unit (GPU) acceleration.
Significance of Parallel Computing on the Performance of Digital Image Correlation Algorithms in MATLAB
Digital Image Correlation (DIC) is a powerful tool used to evaluate displacements and deformations in a non-intrusive manner. By comparing two images, one from the undeformed reference states of the sample and the other from the deformed target state, the relative displacement between the two states is determined. DIC is well-known and often used for post-processing analysis of in-plane displacements and deformation of the specimen. Increasing the analysis speed to enable real-time DIC analysis will be beneficial and expand the scope of this method. Here we tested several combinations of the most common DIC methods in combination with different parallelization approaches in MATLAB and evaluated their performance to determine whether the real-time analysis is possible with these methods. The effects of computing with different hardware settings were also analyzed and discussed. We found that implementation problems can reduce the efficiency of a theoretically superior algorithm, such that it becomes practically slower than a sub-optimal algorithm. The Newton–Raphson algorithm in combination with a modified particle swarm algorithm in parallel image computation was found to be most effective. This is contrary to theory, suggesting that the inverse-compositional Gauss–Newton algorithm is superior. As expected, the brute force search algorithm is the least efficient method. We also found that the correct choice of parallelization tasks is critical in attaining improvements in computing speed. A poorly chosen parallelization approach with high parallel overhead leads to inferior performance. Finally, irrespective of the computing mode, the correct choice of combinations of integer-pixel and sub-pixel search algorithms is critical for efficient analysis. The real-time analysis using DIC will be difficult on computers with standard computing capabilities, even if parallelization is implemented, so the suggested solution would be to use graphics processing unit (GPU) acceleration.
Significance of Parallel Computing on the Performance of Digital Image Correlation Algorithms in MATLAB
Andreas Thoma (author) / Abhijith Moni (author) / Sridhar Ravi (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Ncorr: Open-Source 2D Digital Image Correlation Matlab Software
British Library Online Contents | 2015
|Digital sieving-Matlab based 3-D image analysis
Online Contents | 2012
|Digital sieving-Matlab based 3-D image analysis
British Library Online Contents | 2012
|Digital Image Correlation Using Stochastic Parallel-Gradient-Descent Algorithm
British Library Online Contents | 2013
|Stitch length measuring system with digital image processing based on MatLab
British Library Online Contents | 2008
|