A platform for research: civil engineering, architecture and urbanism
Modeling and Monitoring of Hydrodynamics and Surface Water Quality in the Sulejów Dam Reservoir, Poland
The aim of this work is to evaluate core variables of the ecological potential of the Sulejów Reservoir (temperature distribution, flow velocities, and concentrations of selected indicators, e.g., phosphates, nitrates, the abundance of phytoplankton) using a three-dimensional hydrodynamic model, GEMSS-HDM (generalized environmental modeling system for surface waters), coupled with a water quality model, WASP EUTRO (GEMSS-WQM). The monitoring data necessary to build the model were obtained from two multiparameter probes that were submerged in two locations in the Sulejów Reservoir. An ADCP current profiler was used to collect data for hydrodynamic model calibration and verification. Total error between computed and measured velocity was estimated at 10–15%. A high concentration of chlorophyll-a during the vegetation season of 2015 (0.02 mg/L) was coupled with high water temperature (above 25 °C) and low concentrations of biogenic compounds (phosphorus and nitrogen at 0.02 and 0.001 mg/L, respectively). In 2015, NO3-N was the limiting nutrient in the Sulejów Reservoir. Maximum growth of algae was observed in June and July 2015 (0.02 mg/L chla) along the entire length of the reservoir; algae bloom volume reduction was observed in September (0.004 mg/L chla). Proposed scenarios for nutrient reduction—50% reduction of phosphate-phosphorus (PO4-P) and nitrate-nitrogen (NO3-N) from agriculture areas as well as 50% reduction of discharges from septic tanks—led to a considerable reduction of nutrient concentrations in the reservoir waters; it additionally favors reducing the concentration of chlorophyll-a. The obtained results indicate that these sources of pollutants are mainly responsible for the poor water quality status of the reservoir and more intensive eutrophication phenomena.
Modeling and Monitoring of Hydrodynamics and Surface Water Quality in the Sulejów Dam Reservoir, Poland
The aim of this work is to evaluate core variables of the ecological potential of the Sulejów Reservoir (temperature distribution, flow velocities, and concentrations of selected indicators, e.g., phosphates, nitrates, the abundance of phytoplankton) using a three-dimensional hydrodynamic model, GEMSS-HDM (generalized environmental modeling system for surface waters), coupled with a water quality model, WASP EUTRO (GEMSS-WQM). The monitoring data necessary to build the model were obtained from two multiparameter probes that were submerged in two locations in the Sulejów Reservoir. An ADCP current profiler was used to collect data for hydrodynamic model calibration and verification. Total error between computed and measured velocity was estimated at 10–15%. A high concentration of chlorophyll-a during the vegetation season of 2015 (0.02 mg/L) was coupled with high water temperature (above 25 °C) and low concentrations of biogenic compounds (phosphorus and nitrogen at 0.02 and 0.001 mg/L, respectively). In 2015, NO3-N was the limiting nutrient in the Sulejów Reservoir. Maximum growth of algae was observed in June and July 2015 (0.02 mg/L chla) along the entire length of the reservoir; algae bloom volume reduction was observed in September (0.004 mg/L chla). Proposed scenarios for nutrient reduction—50% reduction of phosphate-phosphorus (PO4-P) and nitrate-nitrogen (NO3-N) from agriculture areas as well as 50% reduction of discharges from septic tanks—led to a considerable reduction of nutrient concentrations in the reservoir waters; it additionally favors reducing the concentration of chlorophyll-a. The obtained results indicate that these sources of pollutants are mainly responsible for the poor water quality status of the reservoir and more intensive eutrophication phenomena.
Modeling and Monitoring of Hydrodynamics and Surface Water Quality in the Sulejów Dam Reservoir, Poland
Aleksandra Ziemińska-Stolarska (author) / Magdalena Kempa (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Improving Run Time in Three-Dimensional Reservoir Hydrodynamics and Water Quality Modeling
HENRY – Federal Waterways Engineering and Research Institute (BAW) | 2012
|Rapid Monitoring and Water Quality Modeling as Reservoir Management Strategies
British Library Conference Proceedings | 2012
|Reservoir unattended movable water quality monitoring system
European Patent Office | 2024
|A Coupled Model of Hydrodynamics and Water Quality for Yuqiao Reservoir in Haihe River Basin
British Library Online Contents | 2008
|