A platform for research: civil engineering, architecture and urbanism
Effect of slope geometry on stability of slope in Almaty
Landslides bring destruction to buildings, and nearby located structures and mostly occur in rural areas. Such hazard commonly takes place in mountainous areas in Central Asia. Kazakhstan region has highly vulnerable areas to rainfall-induced landslides in South-Eastern parts due to presence of many mountains. The purpose of the research is to demonstrate the effect of slope geometry on slope stabilityunder heavy rainfall in Almaty, Kazakhstan. Transient seepage analyses were conducted using Seep/W while limit equilibrium slope stability analyses were performed using Slope/W. 15 sets of numerical analyses were carried out on different slope angle and slope height incorporating the soil-water characteristic curve and unsaturated permeability and unsaturated shear strength of soil from Almaty. According to the obtained simulation results in GeoStudio software for seepage analysis, the pore-water pressure is increased almost for 80 kPa at the mid slope of each simulation. The change of FoS for the gentlest slope with 27 degrees slope angle is the lowest for 10 m slope height and the highest for 30 m slope height, whereas the change of FoS for slope with 45 degrees of slope angle (9%) is almost the same for all slope height.
Effect of slope geometry on stability of slope in Almaty
Landslides bring destruction to buildings, and nearby located structures and mostly occur in rural areas. Such hazard commonly takes place in mountainous areas in Central Asia. Kazakhstan region has highly vulnerable areas to rainfall-induced landslides in South-Eastern parts due to presence of many mountains. The purpose of the research is to demonstrate the effect of slope geometry on slope stabilityunder heavy rainfall in Almaty, Kazakhstan. Transient seepage analyses were conducted using Seep/W while limit equilibrium slope stability analyses were performed using Slope/W. 15 sets of numerical analyses were carried out on different slope angle and slope height incorporating the soil-water characteristic curve and unsaturated permeability and unsaturated shear strength of soil from Almaty. According to the obtained simulation results in GeoStudio software for seepage analysis, the pore-water pressure is increased almost for 80 kPa at the mid slope of each simulation. The change of FoS for the gentlest slope with 27 degrees slope angle is the lowest for 10 m slope height and the highest for 30 m slope height, whereas the change of FoS for slope with 45 degrees of slope angle (9%) is almost the same for all slope height.
Effect of slope geometry on stability of slope in Almaty
Satyanaga Alfrendo (author) / Abishev Rezat (author) / Sharipov Assylanbek (author) / Wijaya Martin (author) / Hamdany Abdul Halim (author) / Moon Sung-Woo (author) / Kim Jong (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Impact of Landfill Slope Geometry on Slope Stability
British Library Conference Proceedings | 1996
|Slope Stability and Slope Engineering
Wiley | 2010
|Springer Verlag | 2020
|