A platform for research: civil engineering, architecture and urbanism
SMARTS-Based Decision Support Model for CMMS Selection in Integrated Building Maintenance Management
An Integrated Maintenance System (IMS) represents a coordinated methodology including different maintenance policies, such as preventive and corrective. These systems rely on Computerized Maintenance Management Systems (CMMSs), specialized software available from multiple suppliers. Given the diverse features of commercial CMMS software, this work aims to develop a decision support model for CMMS evaluation emphasizing an integrated perspective within IMS. A Simple Multi-Attribute Rating Technique using Swings (SMARTS) method was used to build the decision model. Five existing market software were evaluated, and a minimum profile was defined for IMS requirements. Three of the assessed software types met these minimum IMS requirements, while the absence of certain features limited scores for others. The results obtained from the decision support model provide a simple and synthetic way to support decision-makers and promote a systemic view of the software features. The evaluation model has the advantage of adopting criteria that integrate software evaluation; its framing in a building maintenance management model; and new technological trends, such as Building information modeling (BIM), Virtual Reality (VR), Augmented Reality (AR), and Internet of Things (IoT). Considering these outcomes, future developments and alternatives can capitalize on these trends.
SMARTS-Based Decision Support Model for CMMS Selection in Integrated Building Maintenance Management
An Integrated Maintenance System (IMS) represents a coordinated methodology including different maintenance policies, such as preventive and corrective. These systems rely on Computerized Maintenance Management Systems (CMMSs), specialized software available from multiple suppliers. Given the diverse features of commercial CMMS software, this work aims to develop a decision support model for CMMS evaluation emphasizing an integrated perspective within IMS. A Simple Multi-Attribute Rating Technique using Swings (SMARTS) method was used to build the decision model. Five existing market software were evaluated, and a minimum profile was defined for IMS requirements. Three of the assessed software types met these minimum IMS requirements, while the absence of certain features limited scores for others. The results obtained from the decision support model provide a simple and synthetic way to support decision-makers and promote a systemic view of the software features. The evaluation model has the advantage of adopting criteria that integrate software evaluation; its framing in a building maintenance management model; and new technological trends, such as Building information modeling (BIM), Virtual Reality (VR), Augmented Reality (AR), and Internet of Things (IoT). Considering these outcomes, future developments and alternatives can capitalize on these trends.
SMARTS-Based Decision Support Model for CMMS Selection in Integrated Building Maintenance Management
Rui Calejo Rodrigues (author) / Hipólito Sousa (author) / Ivo Almino Gondim (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
An Integrated Computerised Maintenance Management System (I-CMMS) for IBS building maintenance
Emerald Group Publishing | 2018
|Digital transition in facility management. BIM, CMMS and diagnostic maintenance
DOAJ | 2022
|Online Contents | 1998