A platform for research: civil engineering, architecture and urbanism
Effects of Tb-Doped BiVO4 on Degradation of Methylene Blue
Bismuth vanadate (BiVO4) is a narrow-bandgap semiconductor (~2.41 Ev) that responds to visible light. The efficiency of degradation of organic dyes is indexed by methylene blue (MB). After 150 min, the efficiency of MB degradation by pure BiVO4 was about 20%. Its adsorption performance and electron–hole pair migration ability are weak, and the photocatalytic activity of pure BiVO4 needs to be improved. BiVO4 doped with rare earth ions can facilitate the separation of photogenerated electron–hole pairs, thereby enhancing photocatalytic activity in the visible light range. This study investigates changes in the structure and morphology of BiVO4 doped with different atomic percentages of terbium (Tb). BiVO4 powders were prepared by the hydrothermal method with different atomic percentages of Tb (at% = 0, 1, 3, and 5). Doping Tb benefits the coexistence of monoclinic/tetragonal heterostructures, which changes the band gap and improves degradation efficiency. After 150 min of visible light irradiation, the photocatalyst doped with 3 atomic percent of Tb exhibited 98.2% degradation of methylene blue. The degradation percentage of MB remained stable in the presence of 3at%Tb-doped BiVO4 composite. The optimal parameters for the amount of photocatalyst added were studied. Real-field simulations of metal ions and inorganic salts both retain high levels of degradation efficiency.
Effects of Tb-Doped BiVO4 on Degradation of Methylene Blue
Bismuth vanadate (BiVO4) is a narrow-bandgap semiconductor (~2.41 Ev) that responds to visible light. The efficiency of degradation of organic dyes is indexed by methylene blue (MB). After 150 min, the efficiency of MB degradation by pure BiVO4 was about 20%. Its adsorption performance and electron–hole pair migration ability are weak, and the photocatalytic activity of pure BiVO4 needs to be improved. BiVO4 doped with rare earth ions can facilitate the separation of photogenerated electron–hole pairs, thereby enhancing photocatalytic activity in the visible light range. This study investigates changes in the structure and morphology of BiVO4 doped with different atomic percentages of terbium (Tb). BiVO4 powders were prepared by the hydrothermal method with different atomic percentages of Tb (at% = 0, 1, 3, and 5). Doping Tb benefits the coexistence of monoclinic/tetragonal heterostructures, which changes the band gap and improves degradation efficiency. After 150 min of visible light irradiation, the photocatalyst doped with 3 atomic percent of Tb exhibited 98.2% degradation of methylene blue. The degradation percentage of MB remained stable in the presence of 3at%Tb-doped BiVO4 composite. The optimal parameters for the amount of photocatalyst added were studied. Real-field simulations of metal ions and inorganic salts both retain high levels of degradation efficiency.
Effects of Tb-Doped BiVO4 on Degradation of Methylene Blue
Wei-Sheng Chen (author) / Ming-Hong Wu (author) / Jun-Yi Wu (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Online Contents | 2015
|British Library Online Contents | 2009
|British Library Online Contents | 2017
|Visible-light photocatalytic degradation of methylene blue with Fe doped CdS nanoparticles
British Library Online Contents | 2013
|