A platform for research: civil engineering, architecture and urbanism
Lever-Type Tuned Mass Damper for Alleviating Dynamic Responses
This study considers the structural vibration control by a lever-type tuned mass damper (LTMD). The LTMD has a constraint condition to restrict the motion at both ends of the lever. The LTMD controls the dynamic responses at two locations combining the tuned mass damper (TMD) and the constraint condition. The parameters of the LTMD are firstly estimated from the TMD parameters and should be modified by them to obtain from numerical results. The effectiveness of the LTMD is illustrated in two numerical experiments, and the sensitivity of the parameters is numerically investigated. It is shown that the LTMD leads to the remarkable displacement reduction and exhibits more definite control than the TMD system because the LTMD controls the vibration responses at two DOFs. More displacement responses are reduced when the installation locations of the LTMD coincide with the nodes to represent the largest modes’ values at the first and second modes. The application of the LTMD at the dynamic system of a few degrees of freedom (DOFs) is more effective than the system of many DOFs.
Lever-Type Tuned Mass Damper for Alleviating Dynamic Responses
This study considers the structural vibration control by a lever-type tuned mass damper (LTMD). The LTMD has a constraint condition to restrict the motion at both ends of the lever. The LTMD controls the dynamic responses at two locations combining the tuned mass damper (TMD) and the constraint condition. The parameters of the LTMD are firstly estimated from the TMD parameters and should be modified by them to obtain from numerical results. The effectiveness of the LTMD is illustrated in two numerical experiments, and the sensitivity of the parameters is numerically investigated. It is shown that the LTMD leads to the remarkable displacement reduction and exhibits more definite control than the TMD system because the LTMD controls the vibration responses at two DOFs. More displacement responses are reduced when the installation locations of the LTMD coincide with the nodes to represent the largest modes’ values at the first and second modes. The application of the LTMD at the dynamic system of a few degrees of freedom (DOFs) is more effective than the system of many DOFs.
Lever-Type Tuned Mass Damper for Alleviating Dynamic Responses
Eun-Taik Lee (author) / Hee-Chang Eun (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Evaluation of the lever-type active tuned mass damper for structures
Online Contents | 2004
|Frequency conversion lever tuned mass damper device and method
European Patent Office | 2024
|