A platform for research: civil engineering, architecture and urbanism
Nutrient Removal Efficiency and Growth of Watercress (Nasturtium officinale) under Different Harvesting Regimes in Integrated Recirculating Aquaponic Systems for Rearing Common Carp (Cyprinus carpio L.)
The harvesting of plant biomass is usually implemented as an effective tool for plant management and removing the nutrients absorbed in plant tissues. Here, the influence of harvesting different biomasses (50%, 33%, 25%, and 0% (no harvest)) of watercress (Nasturtium officinale) was investigated in integrated recirculating aquaponic systems (IRASs) for rearing common carp (Cyprinus carpio). Twelve independent IRASs were designed (4 × 3); each system consisted of a fish rearing tank, a waste collection tank, and a hydroponic bed. Water quality parameters and the growth of both fish and plants were measured in all the systems, and then the nutrient removal capacities of the hydroponic beds were calculated. The results revealed that increasing the biweekly harvested biomass of the plants decreased the growth of the watercress, while it did not affect the growth of the common carp. Increasing the harvested biomass of the plants also decreased the nitrate nitrogen and orthophosphate removal efficiencies of the aquaponic systems, while it did not affect the ammonia and nitrite nitrogen removal efficiencies. Therefore, a biweekly harvesting of less than 25% of the biomass of the growing watercress is recommended for efficient nutrient removal and the sustainable growth of both watercress and the common carp in aquaponic systems.
Nutrient Removal Efficiency and Growth of Watercress (Nasturtium officinale) under Different Harvesting Regimes in Integrated Recirculating Aquaponic Systems for Rearing Common Carp (Cyprinus carpio L.)
The harvesting of plant biomass is usually implemented as an effective tool for plant management and removing the nutrients absorbed in plant tissues. Here, the influence of harvesting different biomasses (50%, 33%, 25%, and 0% (no harvest)) of watercress (Nasturtium officinale) was investigated in integrated recirculating aquaponic systems (IRASs) for rearing common carp (Cyprinus carpio). Twelve independent IRASs were designed (4 × 3); each system consisted of a fish rearing tank, a waste collection tank, and a hydroponic bed. Water quality parameters and the growth of both fish and plants were measured in all the systems, and then the nutrient removal capacities of the hydroponic beds were calculated. The results revealed that increasing the biweekly harvested biomass of the plants decreased the growth of the watercress, while it did not affect the growth of the common carp. Increasing the harvested biomass of the plants also decreased the nitrate nitrogen and orthophosphate removal efficiencies of the aquaponic systems, while it did not affect the ammonia and nitrite nitrogen removal efficiencies. Therefore, a biweekly harvesting of less than 25% of the biomass of the growing watercress is recommended for efficient nutrient removal and the sustainable growth of both watercress and the common carp in aquaponic systems.
Nutrient Removal Efficiency and Growth of Watercress (Nasturtium officinale) under Different Harvesting Regimes in Integrated Recirculating Aquaponic Systems for Rearing Common Carp (Cyprinus carpio L.)
Tareq Irhayyim (author) / Milán Fehér (author) / Judit Lelesz (author) / Miklós Bercsényi (author) / Péter Bársony (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Acute Toxicity of Heavy Metals to Common Carp (Cyprinus carpio)
Online Contents | 1995
|QTL mapping for economically important traits of common carp (Cyprinus carpio L.)
British Library Online Contents | 2015
|Perfluorinated compounds in common carp (Cyprinus carpio) fillets from the Upper Mississippi River
Online Contents | 2008
|Oxidative stress and genotoxicity induced by ketorolac on the common carp Cyprinus carpio
Online Contents | 2016
|Perfluorinated compounds in common carp (Cyprinus carpio) fillets from the Upper Mississippi River
Online Contents | 2008
|