A platform for research: civil engineering, architecture and urbanism
Herein, a finite discrete element method was used to simulate the rockburst phenomenon of elliptical caverns with different axis ratios. Two situations were employed, namely when the disturbance direction is perpendicular and parallel to the ellipse. Based on the peak stress, maximum velocity, stress nephogram, and image fractal characteristics, the influence of axis ratio and direction of the disturbance on rockburst were analyzed. The results show that the samples with different axis ratios experienced the same process of quiet period, slab cracking period, and rockburst. The rockburst pit had V shape, and the failure modes of rockburst primarily included shear cracks, horizontal tension cracks, and vertical tension cracks. With the rise in axis ratio, the peak stress and maximum speed increased. Furthermore, the pressure area on the left and right sides of the sample cavern decreased when the disturbance direction was parallel to the short axis of the ellipse, while it increased for the sample with a disturbance direction perpendicular to the short axis. The fractal dimension value of the crack was gradually amplified with disturbance. The fractal dimension value of the sample whose disturbance direction was perpendicular to the minor axis of the ellipse was lower, and it was more difficult to damage.
Herein, a finite discrete element method was used to simulate the rockburst phenomenon of elliptical caverns with different axis ratios. Two situations were employed, namely when the disturbance direction is perpendicular and parallel to the ellipse. Based on the peak stress, maximum velocity, stress nephogram, and image fractal characteristics, the influence of axis ratio and direction of the disturbance on rockburst were analyzed. The results show that the samples with different axis ratios experienced the same process of quiet period, slab cracking period, and rockburst. The rockburst pit had V shape, and the failure modes of rockburst primarily included shear cracks, horizontal tension cracks, and vertical tension cracks. With the rise in axis ratio, the peak stress and maximum speed increased. Furthermore, the pressure area on the left and right sides of the sample cavern decreased when the disturbance direction was parallel to the short axis of the ellipse, while it increased for the sample with a disturbance direction perpendicular to the short axis. The fractal dimension value of the crack was gradually amplified with disturbance. The fractal dimension value of the sample whose disturbance direction was perpendicular to the minor axis of the ellipse was lower, and it was more difficult to damage.
Numerical Simulation of Impact Rockburst of Elliptical Caverns with Different Axial Ratios
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Rockburst synthetic criterions of high geostress area for Laxiwa powerstation underground caverns
British Library Conference Proceedings | 1997
|Numerical simulation method for the process of rockburst
Elsevier | 2022
|